
Improving Students’ Testing Practices
Gina R. Bai

North Carolina State University, Raleigh, NC, USA
Advisor: Kathryn T. Stolee

Homepage: https://ginabai.github.io
rbai2@ncsu.edu

ABSTRACT
Software testing prevents and detects the introduction of faults and
bugs during the process of evolving and delivering reliable software.
As an important software development activity, testing has been
intensively studied to measure test code quality and effectiveness,
and assist professional developers and testers with automated test
generation tools. In recent years, testing has been attracting educa-
tors’ attention and has been integrated into some Computer Science
education programs. Understanding challenges and problems faced
by students can help inform educators the topics that require ex-
tra attention and practice when presenting testing concepts and
techniques.

In my research, I study how students implement and modify
source code given unit tests, and how they perceive and perform
unit testing. I propose to quantitatively measure the quality of
student-written test code, and qualitatively identify the common
mistakes and bad smells observed in student-written test code. We
compare the performance of students and professionals, who vary
in prior testing experience, to investigate the factors that lead to
high-quality test code. The ultimate goal of my research is to address
the challenges students encountered during test code composition
and improve their testing skills with supportive tools or guidance.

ACM Reference Format:
Gina R. Bai. 2020. Improving Students’ Testing Practices. In 42nd Interna-
tional Conference on Software Engineering Companion (ICSE ’20 Companion),
May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3377812.3381401

1 INTRODUCTION
Software testing is crucial to help developers detect and fix bugs
and faults in software systems. With the availability and perva-
sive adoption of convenient testing frameworks (e.g., JUnit) and
agile development methodologies (e.g. Test-Driven Development),
writing unit test cases is an increasingly common practice in in-
dustry [20, 37]. As an important software development activity,
testing has been intensively studied on many aspects, such as fault
localization and detection [35], mutation testing [3, 20], regression
testing [16], test code quality and effectiveness [2, 5, 20, 36, 44], and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7122-3/20/05. . . $15.00
https://doi.org/10.1145/3377812.3381401

test suite minimization [21, 22, 40]. Multiple automated test gener-
ation tools [10, 39] have been developed as well. Some researchers
have also explored the unit testing practices of professional devel-
opers/testers, including their motivation, perception of unit testing,
and automated tools they adopted [9, 41]. However, how computing
students and novice testers perceive and perform testing, and the
quality of novice-written test code remains under-studied.

Being considered as one of the most important skills an engineer
should have, however, testing still does not receive its deserved
attention in most Computer Science education programs [4]. For
example, some programs do not offer or only offer software testing
courses as electives [4]. Chan, et al. [8] reported that only 28% of
testing team members received formal training in software test-
ing from universities. Ng and colleagues [33] found that for most
companies (61.4%), less than 20% of testers have received training
in software testing through university studies. Lemos, et al. [29]
claimed that some university instructors tended to lack the ade-
quate understanding of basic software testing concepts, and hence
were insufficient to help students produce more reliable code.

Both educators and researchers have pointed out that the lack of
formal and systematic testing education from university Computer
Science programs and the lack of sufficient professional training in
software testing when the students join the workforce introduced a
skills gap between the Computer Science graduates and the profes-
sional testers/developers [4, 8, 33]. To bridge the gap, educators have
sought to establish and enhance students’ testing skills in recent
years. For instance, integrating testing to CS1 course [19, 26, 31, 43],
proposing postgraduate level courses focused on testing [32], and
introducing tools to support students learning testing [7, 15, 43].

Despite the considerable effort made by researchers and educa-
tors, insights on how and how well students test the source code
given program specifications, what challenges students encounter
when performing testing, if there are differences on testing strate-
gies and performance between students and professionals, and how
to address these issues to improve students’ testing skills are still
lacking. We hypothesize:

By identifying the common mistakes and challenges students
have during the testing process and investigating the factors
that correlate to high-quality test code, we can help students
overcome these barriers and improve their testing perfor-
mance with appropriate supportive tools or guidance.

To evaluate our hypothesis, we ask the following five research
questions:

• RQ1: What are the problem-solving strategies adopted by
students during source code composition to pass the unit
tests? (Study-1)

https://doi.org/10.1145/3377812.3381401
https://doi.org/10.1145/3377812.3381401

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Gina R. Bai

• RQ2: How does the design of unit tests (single assertion
vs. multiple assertions) impact on students’ programming
performance and intention of persistence? (Study-2)

• RQ3:How do students perceive unit testing and what are the
common mistakes and challenges observed during students’
test code composition? (Study-3)

• RQ4:What are the differences between professional devel-
opers and students in terms of perception and performance
on unit testing? (Study-4)

• RQ5: How can educators and practitioners guide students
to perform high-quality testing? (Study-5)

We focus on how students perceive and perform unit testing.
The expected contributions of my research include:

• Better understanding of how and how well students test
source code given program specifications.

• Insights on testing activities that students need more assis-
tance with.

• Applicable suggestions on unit test designs to assist students
with reading and understanding the test code.

• Educational guidance to enhance students’ testing skills.

2 RELATEDWORK
My research is based on prior work that explores the quality and
effectiveness of test code. However, few prior works studied the
quality of student-written test cases.
Test Code Quality and Effectiveness:
Test code quality is usually evaluated with code coverage and mu-
tation testing [2, 20, 36, 44]. Few focused on the quality of student-
written test code [12, 13, 42] and students’ perspectives on unit
testing [18]. The metrics used in these studies are limited to code
coverage, which is argued to be not a strong indicator for test effec-
tiveness [24]. Athanasiou, et al. [5] introduced a complex model that
assesses test code quality by combining source code metrics that re-
flect three main aspects of test code quality: completeness (metrics:
code coverage, assertions-McCabe ratio), effectiveness (metrics: as-
sertion density, directness) and maintainability (adjusted Software
Improvement Group (SIG) quality model).

In my research, we quantitatively measure the quality of student-
written test code, and qualitatively categorize the mistakes and
bad smells [11] observed in the test code. We are also interested in
learning the challenges that students encounter during testing.
Software Testing Education:
As Jones pointed out that, “there is a basic set of testing skills that
every undergraduate should acquire” [27], the practice of software
testing, such as unit testing, is suggested to be integrated into
the Computer Science and Software Engineering curricula as part
of the educational experience [1, 27]. Educators have suggested
different approaches to introduce testing in Computer Science cur-
ricula, such as requiring students to turn in tests along with their
solutions [14, 19], asking students to perform black-box testing of
software seeded with errors [25, 33], and instructing students to
conduct peer testing [18, 38].

Aniche, et al. [4] explored the challenges that students face when
learning software testing. They reported the common mistakes into
eight categories (ordered by their frequency): test coverage, main-
tainability of test code, understanding testing concepts, boundary

testing, state-based testing, assertions, mock objects, and tools. The
researchers discussed the testing topics that students find hard-
est to learn, for example, applying Modified Condition/Decision
Coverage criteria to test complicated conditions, and deciding how
much to test is enough. They also observed that the students are
not sufficiently aware of the difficulty of testability.

In my research, we investigate how students perceive and per-
form unit testing. We explore the factors that lead to high-quality
test code. We recruit students and professional testers that vary
in unit testing experience to participate in these studies intend-
ing to explore if education and prior experience on testing impact
students’ testing performance and strategies.

3 RESEARCH
In the following, I discuss the experimental designs and evaluation
plans of the studies.

3.1 Study-1: Test Code Comprehension -
Problem Solving Strategies (ICPC 2019) [6]

3.1.1 Motivation. In Computer Science, it is a common practice for
instructors to provide students with detailed program specifications
and a set of unit tests to verify the functionality of student-written
code. However, knowledge is lacking on how students comprehend
program specifications and test code, and what are the tools and
strategies they adopt to facilitate programming and satisfying the
unit tests.

3.1.2 Methodology. We conducted an exploratory case study to
reveal the tools and strategies students use during program imple-
mentation. Students were expected to compose regular expressions
in Java that pass unit tests illustrating the intended behavior. We
combined surveys and screen-capture videos to better understand
students’ overall performance on the tasks.

3.1.3 Results. Our findings indicate that the testing environments
are not always sufficient for regular expressions. For example, the
JUnit tests return only pass/fail for regular expression users and
the Eclipse built-in debugger does not explain why the matching
fails; meanwhile, web-based tools that support dynamic testing can
visualize the matching results and explain the syntax of the regular
expression. The results show that participants who consulted web-
based tools passed more tests than those who did not consult web-
based tools.

We also observed that, when being tasked to examine the strings
against a given pattern and extract pertinent information from a
string subject to a regular expression, participants spent a longer
time reading the test cases (2.8 minutes vs. 1.9 minutes) and checked
the test cases more frequently (5.4 times vs. 4.2 times) than being
tasked to validate the entire content of a string against a regular
expression on average.

3.2 Study-2: Test Code Comprehension - Design
& Intention of Persistence (In Progress)

3.2.1 Motivation. There are several guidelines of JUnit test design
that suggest testing one function per unit test [28], or even just
one assertion in each test cases [34]; however, Ma’ayan reported
that, with JUnit testing, there was 61% of all tests contained more

Improving Students’ Testing Practices ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea

than a single assertion; meanwhile, about 78% of all assertTrue
and assertFalse assertions do not contain a customized error
message [30]. There is no empirical study to demonstrate if single-
assertion JUnit tests benefit the users, especially students. Moreover,
as positive feedback may be important to student persistence in
introductory level Computre Science courses, we are interested to
see if single-assertion JUnit tests, which are more likely to provide
positive granular feedback than the multiple-assertions test cases
do, could potentially increase the persistence intention of students
in Computer Science.

3.2.2 Methodology. We adopt A/B testing in this study: single-
assertion test cases versus test cases consist of multiple assertions.
To evaluate students’ implementation given the unit tests and de-
scription of expected program behaviors, we measure the source
code from both groups via the number of passed assertions. A high
pass rate indicates a good implementation.

To evaluate students’ persistence intention and degree of confi-
dence, we compare the differences among students’ self-evaluated
CS abilities and the likelihood of taking more CS courses or pursu-
ing a CS degree between preliminary and post surveys.

3.3 Study-3: Test Code Composition - Students
(In Progress)

3.3.1 Motivation. Studies have been done on test code quality [2, 5,
20, 36, 44]; however, few focused on the quality of student-written
test code [12, 13, 18], and the metrics are limited to code cover-
age, which is argued to be not a strong indicator for test effective-
ness [24]. In addition, how students perceive and write unit tests
remain under-studied.

The goal of this study is to shed light on students’ testing strate-
gies, the challenges they encounter during test code composition,
as well as the factors that correlate to high performance.

3.3.2 Methodology. We survey students to learn how they perceive
unit testing, how they usually test their own code, what tools and
information sources do they consult. We instruct participants to
perform black-box testing and white-box testing on two Java pro-
grams respectively in the Eclipse IDE. Participants are instructed
to test the program requirements as thoroughly as possible. When
finished, participants are expected to complete a post survey and
report the challenges they encountered and things they would like
to receive help on during the study.

For measuring test code quality, in addition to code coverage, our
metrics include the number of detected bugs, requirement coverage,
and mutation score. Besides the quantitative measurements, we
investigate the common mistakes and code smells in the test code.
We adopt the test smells categorized by Deursen, et al. [11] and
code smells defined by Fowler, et al. [17]. For example, redundant
assertions, conditional test logic, and test names that do not reflect
the test intention are potential test smells.

3.4 Study-4: Test Code Composition -
Professionals (Proposed)

3.4.1 Motivation. After learning how and how well students test
the given source code (Study-3), this study focuses on how profes-
sional developers/testers perform unit testing and explores if there

is any difference between professionals and students in terms of
testing performance and strategies. With a better understanding of
the practices that correlate to higher test code quality, we are able
to generalize the strategies or perceptions that may be helpful to
students.

3.4.2 Methodology. We will invite professional developers/testers
to participate in this study. They will be instructed to complete
the same surveys and work on the same testing projects as we
provide the students in Study-3. The same metrics will be applied
to professional-written test code, and the results will be compared
against the students’ testing performance. We will explore the fac-
tors that lead to higher test code quality.

Our results will provide educational tips on unit testing practices
for students to improve their testing skills and performance.

3.5 Study-5: Test Code Quality - Educational
Guidance and Improvement (Proposed)

3.5.1 Motivation. At this stage, we will have learned the mistakes
and challenges that students have during unit testing (Study-3) and
the factors that correlate to high-quality test code (Study-4). There-
fore, we will introduce a supportive tool or an educational guidance
for students and novice testers to assist them in testing programs
in a systematical style. For example, a tool that can simultaneously
decompose specifications and select inputs using techniques such
as boundary value testing for testers. We envision this tool to im-
prove students’ unit testing practices and hence partially reduce
technology companies’ training cost on new hires.

3.5.2 Methodology. To evaluate and validate the usefulness of the
proposed tool/guidance, we will invite both students and profes-
sionals to participate in this study. We will divide the participants
into three groups: 1) students with the proposed tool/guidance
2) students without the proposed tool/guidance, 3) professional
developers without the proposed tool/guidance. Similar to prior
studies, all groups will be instructed to perform black-box testing
and white-box testing, and their performance will be measured
and compared with the same metrics used in Study-3 and Study-4.
Feedback on their experience of this experiment will be collected
to further improve the supportive tool or educational guidance.

4 TIMELINE
The author is a fourth year Computer Science PhD student at North
Carolina State University working with Dr. Kathryn Stolee. The
proposed research plan timeline is as follows:

Milestones Expected Completion
Study-1 Completed: ICPC 2019
Study-2 Spring 2020 - Summer 2020*
Study-3 Spring 2020*
Study-4 Fall 2020 - Spring 2021*
Study-5 Fall 2021 - Spring 2022*
Defense Spring 2022*

*Building on my current publication record in software engineer-
ing [6, 23, 45], the potential venues for submission include ISSTA,
ICSE, FSE, ICPC, and other peer-reviewed conferences and journals.

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Gina R. Bai

ACKNOWLEDGMENTS
Special thanks to my Ph.D. advisor Kathryn T. Stolee for her con-
tinuous support and patience. This material is based upon work
supported by the NSF under Grant #1645136 and Grant #1749936.

REFERENCES
[1] ACM, 2013. Computer Science Curricula Recommendations: Curriculum Guide-

lines for Undergraduate Degree Programs in Computer Science. https://www.
acm.org/education/curricula-recommendations. (ACM, 2013).

[2] T. L. Alves and J. Visser. 2009. Static Estimation of Test Coverage. In International
Working Conference on Source Code Analysis and Manipulation. 55–64.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is Mutation an Appropriate
Tool for Testing Experiments?. In Proceedings of the 27th International Conference
on Software Engineering (ICSE ’05). ACM, New York, NY, USA, 402–411.

[4] Maurício Aniche, Felienne Hermans, and Arie van Deursen. 2019. Pragmatic
Software Testing Education. In Proceedings of the ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). ACM, New York, NY, USA, 414–420.

[5] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman. 2014. Test Code Quality
and Its Relation to Issue Handling Performance. IEEE Transactions on Software
Engineering 40, 11 (Nov 2014), 1100–1125.

[6] Gina R. Bai, Brian Clee, Nischal Shrestha, Carl Chapman, Cimone Wright, and
Kathryn T. Stolee. 2019. Exploring Tools and Strategies Used During Regular
Expression Composition Tasks. In Proceedings of the 27th International Conference
on Program Comprehension (ICPC ’19). IEEE Press, Piscataway, NJ, USA, 197–208.

[7] Michael K. Bradshaw. 2015. Ante Up: A Framework to Strengthen Student-Based
Testing of Assignments. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (SIGCSE ’15). ACM, New York, NY, USA, 488–493.

[8] F. T. Chan, T. H. Tse, W. H. Tang, and T. Y. Chen. 2005. Software testing education
and training in Hong Kong. In Fifth International Conference on Quality Software
(QSIC’05). 313–316.

[9] Ermira Daka and Gordon Fraser. 2014. A Survey on Unit Testing Practices and
Problems. In 2014 IEEE 25th International Symposium on Software Reliability
Engineering. 201–211.

[10] Ermira Daka, José Miguel Rojas, and Gordon Fraser. 2017. Generating Unit Tests
with Descriptive Names or: Would You Name Your Children Thing1 and Thing2?.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 57–67.

[11] Arie Deursen, Leon M.F. Moonen, A. Bergh, and Gerard Kok. 2001. Refactoring
Test Code. Technical Report. Amsterdam, The Netherlands, The Netherlands.

[12] Stephen H. Edwards. 2003. Improving Student Performance by Evaluating How
Well Students Test Their Own Programs. J. Educ. Resour. Comput. 3, 3, Article 1
(Sept. 2003).

[13] Stephen H. Edwards and Zalia Shams. 2014. Do Student Programmers All Tend
to Write the Same Software Tests?. In Proceedings of the 2014 Conference on
Innovation & Technology in Computer Science Education (ITiCSE ’14). ACM,
New York, NY, USA, 171–176.

[14] Stephen H. Edwards, Zalia Shams, Michael Cogswell, and Robert C. Senkbeil.
2012. Running Students’ Software Tests Against Each Others’ Code: New Life
for an Old "Gimmick". In Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education (SIGCSE ’12). ACM, New York, NY, USA, 221–226.

[15] S. Elbaum, S. Person, J. Dokulil, and M. Jorde. 2007. Bug Hunt: Making Early Soft-
ware Testing Lessons Engaging and Affordable. In 29th International Conference
on Software Engineering (ICSE’07). 688–697.

[16] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments.
In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2014). ACM, New York, NY, USA, 235–245.

[17] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. 1999.
Refactoring: Improving the Design of Existing Code. Addison-Wesley.

[18] Alessio Gaspar, Sarah Langevin, Naomi Boyer, and Ralph Tindell. 2013. A Prelim-
inary Review of Undergraduate Programming Students’ Perspectives on Writing
Tests, Working with Others, & Using Peer Testing. In Proceedings of the 14th
Annual ACM SIGITE Conference on Information Technology Education (SIGITE
’13). ACM, New York, NY, USA, 109–114.

[19] Michael H. Goldwasser. 2002. A Gimmick to Integrate Software Testing Through-
out the Curriculum. In Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’02). ACM, New York, NY, USA, 271–275.

[20] G. Grano, F. Palomba, and H. C. Gall. 2019. Lightweight Assessment of Test-
Case Effectiveness using Source-Code-Quality Indicators. IEEE Transactions on
Software Engineering (2019), 1–1.

[21] Alex Groce, Josie Holmes, and Kevin Kellar. 2017. One Test to Rule Them All.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 1–11.

[22] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015.
The Art of Testing Less Without Sacrificing Quality. In Proceedings of the 37th

International Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press,
Piscataway, NJ, USA, 483–493.

[23] Nasif Imtiaz, Justin Middleton, Joymallya Chakraborty, Neill Robson, Gina Bai,
and Emerson Murphy-Hill. 2019. Investigating the Effects of Gender Bias on
GitHub. In Proceedings of the 41st International Conference on Software Engineering
(ICSE ’19). IEEE Press, Piscataway, NJ, USA, 700–711.

[24] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 36th International Conference
on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 435–445.

[25] Ursula Jackson, Bill Z. Manaris, and Renée A. McCauley. 1997. Strategies for
Effective Integration of Software Engineering Concepts and Techniques into
the Undergraduate Computer Science Curriculum. In Proceedings of the Twenty-
eighth SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’97).
ACM, New York, NY, USA, 360–364.

[26] David Janzen and Hossein Saiedian. 2008. Test-driven Learning in Early Pro-
gramming Courses. In Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’08). ACM, New York, NY, USA, 532–536.

[27] E. L. Jones. 2001. An experiential approach to incorporating software testing
into the computer science curriculum. In 31st Annual Frontiers in Education
Conference. Impact on Engineering and Science Education. Conference Proceedings
(Cat. No.01CH37193), Vol. 2. F3D–7.

[28] Koskela, L. 2013. Effective Unit Testing: A Guide for Java Developers. Manning.
[29] Otavio Lemos, FÃąbio Silveira, Fabiano Ferrari, and Alessandro Garcia. 2017.

The Impact of Software Testing Education on Code Reliability: An Empirical
Assessment. Journal of Systems and Software (03 2017).

[30] Dor D. Ma’ayan. 2018. The Quality of Junit Tests: An Empirical Study Report.
In Proceedings of the 1st International Workshop on Software Qualities and Their
Dependencies (SQUADE ’18). ACM, New York, NY, USA, 33–36.

[31] Will Marrero and Amber Settle. 2005. Testing First: Emphasizing Testing in Early
Programming Courses. In Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’05). ACM, 4–8.

[32] M. D. Mohamed Suffian, S. Ibrahim, and M. R. Abdullah. 2014. A proposal of post-
graduate programme for software testing specialization. In 2014 8th. Malaysian
Software Engineering Conference (MySEC). 342–347.

[33] S. P. Ng, T. Murnane, K. Reed, D. Grant, and T. Y. Chen. 2004. A preliminary
survey on software testing practices in Australia. In 2004 Australian Software
Engineering Conference. Proceedings. 116–125.

[34] Roy Osherove. 2009. The Art of Unit Testing: With Examples in .Net (1st ed.).
Manning Publications Co., Greenwich, CT, USA.

[35] Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball. 2008. Finding Errors in .Net
with Feedback-directed Random Testing. In Proceedings of the 2008 International
Symposium on Software Testing and Analysis (ISSTA ’08). ACM, 87–96.

[36] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. 2016. Automatic Test Case Generation: What if Test Code Quality
Matters?. In Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA 2016). ACM, New York, NY, USA, 130–141.

[37] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding
Myths and Realities of Test-suite Evolution. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering (FSE
’12). ACM, New York, NY, USA, Article 33, 11 pages.

[38] James Robergé and Candice Suriano. 1994. Using Laboratories to Teach Software
Engineering Principles in the Introductory Computer Science Curriculum. In
Proceedings of the Twenty-fifth SIGCSE Symposium on Computer Science Education
(SIGCSE ’94). ACM, New York, NY, USA, 106–110.

[39] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2015. Automated Unit
Test Generation During Software Development: A Controlled Experiment and
Think-aloud Observations. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis (ISSTA 2015). ACM, New York, NY, USA, 338–349.

[40] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. 1998.
An Empirical Study of the Effects of Minimization on the Fault Detection Capa-
bilities of Test Suites. In Proceedings of the International Conference on Software
Maintenance (ICSM ’98). IEEE Computer Society, Washington, DC, USA, 34–.

[41] P. Runeson. 2006. A survey of unit testing practices. IEEE Software 23, 4 (July
2006), 22–29.

[42] Lilian Passos Scatalon, Jeffrey C. Carver, Rogério Eduardo Garcia, and
Ellen Francine Barbosa. 2019. Software Testing in Introductory Programming
Courses: A Systematic Mapping Study. In Proceedings of the ACM Technical Sym-
posium on Computer Science Education (SIGCSE ’19). ACM, NY, USA, 421–427.

[43] Jaime Spacco and William Pugh. 2006. Helping Students Appreciate Test-driven
Development (TDD). In Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’06).
ACM, New York, NY, USA, 907–913.

[44] J. Voas. 1997. How assertions can increase test effectiveness. IEEE Software 14, 2
(Mar 1997), 118–119.

[45] P. Wang, G. R. Bai, and K. T. Stolee. 2019. Exploring Regular Expression Evolution.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 502–513.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1645136
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1749936
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations

	Abstract
	1 Introduction
	2 Related Work
	3 Research
	3.1 Study-1: Test Code Comprehension - Problem Solving Strategies (ICPC 2019) GinaRegexVideo
	3.2 Study-2: Test Code Comprehension - Design & Intention of Persistence (In Progress)
	3.3 Study-3: Test Code Composition - Students (In Progress)
	3.4 Study-4: Test Code Composition - Professionals (Proposed)
	3.5 Study-5: Test Code Quality - Educational Guidance and Improvement (Proposed)

	4 Timeline
	Acknowledgments
	References

