
Exploring Tools and Strategies Used During
Regular Expression Composition Tasks

Gina R. Bai∗, Brian Clee∗, Nischal Shrestha∗, Carl Chapman†, Cimone Wright†, Kathryn T. Stolee∗
∗ Department of Computer Science, North Carolina State University, Raleigh, NC, USA

† Department of Computer Science, Iowa State University, Ames, IA, USA
{rbai2, nshrest, ktstolee}@ncsu.edu, briancleeisme@gmail.com, carlallenchapman@gmail.com, clwright@iastate.edu

Abstract—Regular expressions are frequently found in pro-
gramming projects. Studies have found that developers can accu-
rately determine whether a string matches a regular expression.
However, we still do not know the challenges associated with
composing regular expressions.

We conduct an exploratory case study to reveal the tools and
strategies developers use during regular expression composition.
In this study, 29 students are tasked with composing regular
expressions that pass unit tests illustrating the intended behavior.
The tasks are in Java and the Eclipse IDE was set up with
JUnit tests. Participants had one hour to work and could use any
Eclipse tools, web search, or web-based tools they desired. Screen-
capture software recorded all interactions with browsers and the
IDE. We analyzed the videos quantitatively by transcribing logs
and extracting personas. Our results show that participants were
30% successful (28 of 94 attempts) at achieving a 100% pass rate
on the unit tests. When participants used tools frequently, as in
the case of the novice tester and the knowledgeable tester personas,
or when they guess at a solution prior to searching, they are
more likely to pass all the unit tests. We also found that compile
errors often arise when participants searched for a result and
copy/pasted the regular expression from another language into
their Java files. These results point to future research into making
regular expression composition easier for programmers, such as
integrating visualization into the IDE to reduce context switching
or providing language migration support when reusing regular
expressions written in another language to reduce compile errors.

Index Terms—Exploratory study, regular expressions, problem
solving strategies, personas

I. INTRODUCTION

Regular expressions are powerful programming tools and
pervasively applied in text editors [1], search engines [2], and
network security [3]. However, regular expressions are hard to
read, write, maintain, and understand [4]–[6], and developers
often leave their regular expressions under-tested [4], [7].

Various tools aim to help programmers with solving regular
expression-related tasks. For example, some web tools visu-
alize regular expression strings for users [8], [9] and some
websites explain and highlight the matching behavior in a
debugging environment [10], [11]. Researchers have created
educational games to encourage programmers to gain better
understanding and experience in interpreting regular expres-
sions in an enjoyable environment [12]–[15]. All of these
efforts reflect a need for better support for regular expression
composition.

However, regular expressions are largely under-studied in
the hands of users. Researchers have surveyed developers

about regular expression usage [4] and measured how well
people can determine if a regular expression matches a
string [5]. Yet, we still do not know what tools and strategies
they use during regular expression composition tasks.

We ran an exploratory study during which 29 participants
composed regular expressions to pass JUnit tests. This study
provided 20 regular expression tasks with accompanying tests
and participants were instructed to complete as many tasks
as possible in the time allotted, using a prescribed (randomly
generated) task order. After analyzing survey responses from
and screen-capture videos generated by the participants in
an hour-long lab activity, we are able to reveal their overall
performance on the regular expression tasks and categorize
their behaviors during composition. Our findings include:

• Visualization of regular expressions (i.e. from web tools)
helps developers pass more tests in the tasks (Sec-
tion V-B).

• Participants who consulted official documentation and
tutorials for regular expressions are more likely to pass
more tests in the regular expression tasks than those
who consulted Q&A websites (e.g., Stack Overflow)
(Section V-C).

• Participants who first tried to compose a regular expres-
sion solution instead of first using web search to find a
solution are more likely to pass all the tests (Section V-D).

• When participants adapted solutions from other lan-
guages, 36.3% copied and pasted contents from websites
(e.g., Q&A sites and web tools) to Eclipse and subse-
quently modified the regular expression syntax to correct
compile errors (Section V-E).

• The most frequent personas were intermediates, repre-
senting participants who showed insufficient prior knowl-
edge on regular expressions and little growth or success
over the course of the experiment (Section VI).

As this is the first observational study of regular expression
composition, we identify several avenues for future work.
These include integrating better support into the IDE to reduce
context switching between applications and providing support
for migrating regular expressions between languages to reduce
compile errors.

The rest of the paper is organized as follows. Section II
presents the research questions, followed by the study design
to address the research questions in Section III. The analysis

is presented in Section IV, followed by results in Section V
and Section VI. A discussion identifies implications and areas
of future work in Section VII, followed by related work in
Section IX and a conclusion in Section X.

II. RESEARCH QUESTIONS

The goal of our research is to understand the relationship
between a participant successfully composing a regular ex-
pression and the strategies used or resources consulted. This
exploratory study uses screen-capture software to observe how
participants compose regular expressions to pass a set of test
cases. This allows us to perform quantitative analysis over
logs extracted from the videos and study the participants’
behaviors.

We explore the following research questions:
• RQ1: What tools and strategies do developers employ

while solving regular expression tasks in the Eclipse IDE?
We analyzed the following dimensions that emerged from
the data: tools (Eclipse built-in debugger, web tools);
different sources of information (tutorials, API doc, Q&A
sites); and strategies for composition, such as copy &
paste or direct creation.

• RQ2: Which personas emerge as representative of the
task performance exhibited by the developers?
To categorize the personas, we used quantitative informa-
tion. Quantitative information included: the average first
time pass rate (the number of passed tests/the number of
total tests in one task) per task, average improved pass
rate per task, and the average number of test runs per
task.

III. STUDY DESIGN

This study was run in a lab environment. Participants were
given a series of tasks to perform in the Eclipse IDE. This
section details the tasks, procedures, participants, and data
collected.

A. Tasks

There were 20 tasks available for participants to complete.1

These tasks were selected for diversity of questions and to
cover the most common language features of regular expres-
sions [4]. Table I shows the complete list of tasks (Task), the
number of JUnit tests in each task (#JUnit) and their sample
regular expression solutions (Sample Regular Expression So-
lutions), including escaped slashes. The examples in Figure 1
and Figure 3 map to tasks ValidEmail and NoVowelsWord

respectively.
A task includes source code with a blank regular ex-

pression, test cases to demonstrate expected behavior, and
a textual description for the expected behavior. Figure 1
contains code for the ValidEmail task in our study that
uses the Pattern.matches() function to validate an email
address input string using a regular expression composed by
a participant. Participants were expected to fill in the blank

1Artifacts: https://github.com/softwarekitty/regexCompositionStudy

1/** A line of text will contain at most one newline
2 * and only then at the end of the string (this
3 * input will not have multiple lines). This
4 * function should take one line of text and verify
5 * that the entire string is composed of one valid
6 * email. Extra characters like whitespace before
7 * or after, or anything that would invalidate the
8 * email are not allowed (except newline at the
9 * end).

10 */
11public class ValidEmail {
12 public boolean isValidEmail(String line) {
13 // TODO compose a regex to complete the challenge
14 String regex = "";
15 return Pattern.matches(regex, line);
16 }
17}

Fig. 1. Code and Description for Task ValidEmail and One Sample Associated
JUnit Test

1public class ValidEmailTest {
2 private static ValidEmail validEmail = null;
3 @BeforeClass
4 public static void setup() {
5 validEmail = new ValidEmail();
6 }
7 @Test
8 public void testIsValidEmail_1() {
9 //a typical email

10 String anyLine =
"###/+-?ˆ_‘{|}˜$$$***@weird.do";

11 boolean correctAnswer = true;
12 boolean compositionAnswer =

validEmail.isValidEmail(anyLine);
13 assertTrue(compositionAnswer == correctAnswer);
14 }
15 // ... More tests, eight test cases in total

Fig. 2. Code and Description for Task ValidEmail and One Sample Associated
JUnit Test

string on line 14 such that the tests for the class (e.g, one
sample test shown in Figure 2), will pass.

The other test cases check three other valid email ad-
dresses: "name@domain.com", "1.2.3.4@crazy.domain.axes"
and "!@B.gone". Four false test cases are covered as well: a
twitter handle, a website url, a single word, and a sentence.

Another sample task NoVowelsWord is introduced in Fig-
ure 3. In this task, participants were expected to fill in
the blank string on line 12 to pass the tests for the class.
The Matcher.find() function searches for occurrences of the
regular expressions in the text provided in the JUnit tests (e.g,
one sample test shown in Figure 4).

Of the tasks, five used the Pattern.matches() function
to validate the entire content of a string against a regular
expression (Validation in Type column of Table I), and 15
used Matcher.find() to examine the strings against a given
pattern and extract pertinent information from a string subject
to a regular expression (Extraction in Type column of Table I).

We point out here that there are many possible correct
solutions for any of the tasks. For example, both regular
expressions .+@.+ and \\S+@\\S+.\\w are candidates

2

https://github.com/softwarekitty/regexCompositionStudy

TABLE I
REGULAR EXPRESSION PROBLEMS AND SAMPLE SOLUTIONS

Type Task #JUnit Sample Regular Expression Solution
Extraction AlternatingParity 7 (?<!\\d)(([02468][13579])+[02468]?|([13579][02468])+[13579]?)(?!\\d)
Extraction GoogleKeywords 5 .*www.google.com.*q=(.*)
Extraction OnMinuteEvents 5 \\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:00Z\\s+(.*)
Extraction PossessedPossessions 4 [a-zA-Z]{2,}’s([a-zA-Z]{2,})
Extraction ReceiptScanner 4 \\A\\s*(.+?)\\s*[\n]|\\\$?(\\d+(\\.\\d{2})?).*\\Z
Extraction RepeatedWords 5 (\\w+),?\\1\\b\\
Extraction TSVParser 4 ([ˆ\t\n]+)\t[ˆ\t\n]+\t([ˆ\t\n]+)
Extraction VerbPortion 5 \\b([a-zA-Z]{2,})ing\\b
Extraction JavaIntDeclaration 5 \\s*int\\s+\\w+\\s*=\\s*(\\d+);
Extraction LastDuplicateByte 6 ˆ.*([0-9ABCDEF]{2}).*?\\1.*$
Extraction ShortestDNA 5 (AT(((?!AT).)*?)GC)
Extraction TrimWhitespace 6 ˆ\\s*(.*?)\\s*$
Extraction HasSoyIngredient 14 \\b(Edamame|Kinnoko|Kyodofu|Miso|Natto|Okara|Shoyu|Soy(a)?|

soybean(s)?|Tamari|Tempeh|Teriyaki|vegetable protein|Tofu|Yakidofu|
Yuba|TSF|TSP|TVP)\\b

Extraction NoGremlins 6 \\A[ˆ\\f\\r\b]*\\z
Extraction NoVowelsWord 5 \\b[bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ]{2,}\\b
Validation OutlineFormat 10 ˆ\\s*([a-z]|[A-Z]|i+|\\d+)\\.\\s+.*$
Validation ReverseSentences 5 \\.(\\S+)*\\S*[A-Z](\\s+\\.(\\S+)*\\S*[A-Z])*
Validation SpacedWords 11 ˆ([a-zA-Z0-9]+\\s+)+([a-zA-Z0-9]+)?$|ˆ(\\s+[a-zA-Z0-9]+)+(\\s+)?$
Validation ValidEmail 8 [A-Z0-9a-z.!#$%&’*+-/=?ˆ_‘{|}˜]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,4}
Validation ValidPhoneNumber 13 ˆ(\\([0-9]{3}\\)|[0-9]{3})[-]?[0-9]{3}[-]?[0-9]{4}$

1/** Returns true if any alphanumeric word in the
2 * text contains no vowels. So the strange sentence:
3 * "I have ctmpts training to go to!" should return
4 * true. Input does not need to be a sentence, and
5 * words are separated by whitespace as usual,
6 * ignoring punctuation Words are composed of 2 or
7 * more lowercase or uppercase letters.
8 */
9public class NoVowelsWord {

10 public boolean hasNoVowelsWord(String content) {
11 // TODO compose a regex to complete the

challenge
12 String regex = "";
13 Pattern pattern = Pattern.compile(regex,

Pattern.CASE_INSENSITIVE);
14 Matcher matcher = pattern.matcher(content);
15 return matcher.find();
16 }
17}

Fig. 3. Code and Description for Task NoVowelsWord and One Sample
Associated JUnit Test

for correct solution to the ValidEmail task. The only re-
quirement for successful completion is that all the test cases
pass. Additionally, these sample solutions are smaller than
the regular expressions found in open source projects, where
size is measured by the number of nodes and edges in their
DFA representations from RE2 (a tool that backtracks regular
expressions) [16]. The average size of the sample solutions
is 14 nodes and 37.5 edges, whereas the average size of
15,096 regular expressions from GitHub is 28 nodes and 75
edges [7]. In terms of complexity, measured as the ratio of
edges to nodes, the two data sets are equivalent. Using smaller
regular expressions is a design choice since participants have
a short time to understand the desired behavior of the regular
expression tasks and work on them.

1public class NoVowelsWordTest {
2 private static NoVowelsWord noVowelsWord = null;
3 @BeforeClass
4 public static void setup() {
5 noVowelsWord = new NoVowelsWord();
6 }
7 @Test
8 public void testHasNoVowelsWord_1() {
9 //the word ’CTMPTS’ has no vowels

10 String anyLine = "April and Ron are taking
CTMPTS training";

11 boolean correctAnswer = true;
12 boolean compositionAnswer =

noVowelsWord.hasNoVowelsWord(anyLine);
13 assertTrue(compositionAnswer==correctAnswer);
14 }
15 // ... More tests, five test cases in total

Fig. 4. Code and Description for Task NoVowelsWord and One Sample
Associated JUnit Test

B. Procedure

The study was conducted in a lab setting over two sessions,
one hour each. Participants attended one lab session only. All
desktop computers in the lab had screen capturing software
and browsers installed prior to the study. Eclipse was pre-
loaded with the study tasks. Participants were asked to use
the lab computers only; no personal computers were allowed.

At the beginning of the study, participant were asked
to complete a paper-based questionnaire which focused on
educational classification and programming expertise as shown
in Figure 5.

For the study tasks, each participant received a list of tasks
from Table I defining the order in which they were to attempt
the tasks. The order was randomly generated to avoid potential
learning effects. Participants were given one hour to complete
as many tasks as they could, and were told they were not

3

1) What year are you in school (closest match)?
a) Freshmen b) Sophomore c) Junior d) Senior
e) Graduate Student

2) How would you rate your Java programming experience?
a) Novice b) Intermediate c) expert

3) What is your experience with regular expressions?
a) I have never heard of them
b) I have heard of them, but have no experience
c) I have used them once or twice
d) I use them regularly
e) I am an expert

4) What is your experience with JUnit tests?
a) I have never heard of them
b) I have heard of them, but have no experience
c) I have used them once or twice
d) I use them regularly
e) I am an expert

5) How frequently do you use web searches while program-
ming?
a) I have never heard of them
b) I have heard of them, but have no experience
c) I have used them once or twice
d) I use them regularly
e) I am an expert

6) How many years have you been programming?
7) How many years have you been programming in Java?

Fig. 5. Survey Questions

expected to finish all 20 tasks in the allotted time. They were
allowed to use web resources and any default Eclipse utilities
to assist in completing regular expression tasks. During the
study, screens were recorded to facilitate analysis.

C. Participants

In total, 34 participants were recruited through e-mails
sent to students who had passed the introductory object-
oriented programming course at Iowa State University. Every
participant was required to fill out a survey before they started
to solve the tasks. The participants included 25 undergraduate
students and four graduate students. There were five additional
students who had issues with screen-capture, so they were
omitted from all analyses. We compensate every participant
$20 in cash upon completion of the study.

Among the 29 participants from whom we collected data,
there was an average of 4.16 years of programming experience,
and an average of 3.26 years of Java experience. The survey
results found that a majority of participants (76%) considered
themselves as having intermediate Java programming knowl-
edge though 20 participants had little or no experience with
regular expressions. Participants either had no experience with
JUnit tests at all (65.5%) or used them regularly (34.5%). All
participants made use of web searches while programming.

D. Data Description

After removing the five videos that had screen capture
issues, we ended up with 29 videos for analysis, 45-60 minutes
each. This represents over 24 total hours of video, 94 total

attempts at solving the tasks by the 29 participants, 1,097 total
web searches, 3,401 websites visited in the browser, and 230
copy/paste interactions between the browser and the IDE.

IV. ANALYSIS

To enable a quantitative analysis of the participants’ prob-
lem solving processes, two authors designed a log to capture
important events during the sessions. Next, these two authors
transcribed the videos into the log format separately and then
merged their logs. No inter-rater reliability was considered in
this process.

A. Logged Events

Trigger events are used to identify when a log entry should
be made. A trigger event is an on-screen event that prompts
the transcriber to log the action. Once an event trigger is seen,
the event is logged. The logs contain columns to describe the
event. When a trigger event occurred, a row was added to
the log and its associated column(s) were logged. A detailed
description of the columns follows:

Time: Current time in the video when an event occurred.
Task: The name of the task in Eclipse.
Search: String from an online search query.
Website Visited: Current website visited.
Regex String: Regular expression in Eclipse or web tool.
Copy Paste: Type of copy-pasted item: test string or regular

expression.
Debugger: True if using the Eclipse Debugger.
Eclipse: True if the event occurred while using Eclipse.
Web Tool: True if the event occurred while using a web

tool.
JUnit Tests: True if the participant visited the JUnit tests.
Test Passed: The specific test(s) that passed.
Pass Rate: The pass rate of the executed JUnit tests,

calculated as: # Passed JUnit Tests
Total JUnit Tests

We consider the following as trigger events for the log entries:
• Application switch (logged: Time, Eclipse, Web Tool)
• Switch to browser (logged: Time, Website Visited)
• Search in browser (logged: Time, Search)
• Access website in browser (logged: Time, Website Visited)
• Access debugger or development environment in Eclipse

(logged: Time, Debugger)
• Copy regular expressions or strings (logged: Time, Copy

Paste, Website Visited or Eclipse)
• Paste regular expressions or strings (logged: Time, Copy

Paste, Website Visited or Eclipse)
• Compose/Edit regular expressions (logged: Time, Regex

String)
• Run JUnit tests (logged: Time, Test Passed, Pass Rate)
• Switch task in Eclipse (logged: Time, Task)
• Switch between JUnit tests and code in Eclipse IDE

(logged: Time, JUnit Tests)
For example, consider a participant who 1) opens task ValidE-
mail and starts to work on it at 00:10:04, 2) switches to
Chrome browser and 3) searches “valid email in regex Java”

4

TABLE II
PARTICIPANT’S BEHAVIORAL METRICS FOR A SUBSET OF PARTICIPANTS

(8/29)

ParID AFPR AIPR ATR Persona Vector
krl 0% (0) 20% (L) 13.5 (H) <0, 0/L, H>
b4r 0% (0) 50% (H) 68 (H) <0, H, H>
dm8 15% (L) 18% (L) 5.3 (L) <L, 0/L, L>
vrh 17% (L) 36% (H) 9.5 (L) <L, H, L>
q3d 45% (H) 23% (L) 10.5 (H) <H, 0/L, H>
clx 36% (H) 45% (H) 17 (H) <H, H, H>
l6o 39% (H) 10% (L) 4.4 (L) <H, 0/L, L>
nxb 39% (H) 33% (H) 3.7 (L) <H, H, L>

Average: 29% 31% 10.1 —

at 00:10:34, 4) clicks on and visits a Stack Overflow result
at 00:10:39, 5) copies an existing sample regular expression,
.+@.+, at 00:12:15, 6) switches to Eclipse at 00:12:16, and
7) pastes into Eclipse at 00:12:17, then 8) runs the tests. In
this scenario, the eight trigger events are: 1) switch task in
Eclipse, 2) switch to browser, 3) search in browser, 4) access
website in browser, 5) copy regular expressions or strings,
6) application switch, 7) paste regular expressions or strings,
8) run JUnit tests. The total columns being logged are: Time,
Eclipse, Search, Website Visited, Copy Paste, Regex String,
Test Passed, Pass Rate.

In the end, there were 11,644 total rows logged among all
29 participants.

B. Personas

Our process for determining personas was driven by quan-
titative observations, and was motivated by a work of Pruitt
and Grudin, which suggests that personas provide an effective
way to communicate qualitative and quantitative data [17].
We therefore use personas to synthesize and communicate
quantitative observations about study participant behavior.

1) Metrics: To assist persona identification, we consider the
following quantitative metrics:

• Average first time pass rate per task (AFPR): the pass
rate a participant produced in first JUnit test run in one
task, on average. This reflects a participant’s prior/ini-
tial knowledge of regular expressions. A high pass rate
indicates a knowledgeable participant; a low pass rate
indicates an intermediate participant; and a 0% pass rate
indicates a novice participant.

• Average improved pass rate per task (AIPR): the percent-
age of pass rate improved in one task, on average. This
reflects a participant’s learning progress during regular
expression task composition.

• Average number of test runs per task (ATR): the times
a participant tested one task, on average. This reflects a
participant’s testing behavior. A high number of test run
times indicates a tester.

2) Persona Vector Identification: We adopt the persona
identification process used in the work of Dubey, et al. [18].
The first step of persona identification process is to calculate
all the metrics discussed in Section IV-B1. Next, we classify

TABLE III
RANKING OF REGULAR EXPRESSION TASKS BASED ON AVERAGE PASS

RATE

Type Task Avg % #Attempt #100%
Validation OutlineFormat 100% 1 1
Extraction NoVolwelsWord 87% 3 2
Validation ValidEmail 86% 8 5
Extraction TrimWhitespace 84% 2 1
Validation ValidPhoneNumber 81% 6 3
Validation ReverseSentences 70% 4 2
Validation SpacedWords 67% 7 2
Extraction PossessedPossessions 63% 2 1
Extraction NoGremlins 62% 4 0
Extraction ShortestDNA 60% 3 1
Extraction LastDuplicateByte 54% 4 0
Extraction JavaIntDeclaration 53% 8 2
Extraction VerbPortion 52% 5 1
Extraction RepeatedWords 47% 6 2
Extraction GoogleKeywords 42% 12 5
Extraction TSVParser 42% 3 0
Extraction AlternatingParity 32% 4 0
Extraction HasSoyIngredient 32% 2 0
Extraction ReceiptScanner 29% 7 0
Extraction OnMinuteEvents 13% 3 0
Total 56% 94 28

the value of each metric as low (L) or high (H) against the
average value among all participants, we also label 0 (0) if the
average value is zero. Then we build persona vector to assist
creation of personas. Table II shows the metrics values (AFPR,
AIPR, ATR) and the average value of each metric among all
participants, as well as the eight identified persona vectors
(Persona Vector), each with one sample participant provided
(ParID).

V. RESULTS - RQ1

We describe the results in terms of attempts, where an
attempt is a pairing of participant and task during which
the participant ran the test cases. In total, the 29 participants
viewed 121 tasks, but only ran the tests for 94, yielding 94
attempts for analysis.

A. Overall Correctness

Overall, participants ran tests for 94 attempts. Of these, 28
succeed with 100% of the unit tests passing, and the remaining
66 were abandoned with lower pass rates, either because the
participants ran out of time (21) or switched tasks (45). The
overall average pass rate across all 94 attempts was 56%. Of
the 29 participants, 14 were successful in at least one attempt.

Table III shows the average pass rate (Avg %) on the JUnit
tests on the attempts (#Attempt) on each task (Task) with its
type listed in column Type. Column #100% shows the number
of attempts that passed all JUnit tests on this task. Pass rate for
an attempt is calculated by the maximum number of passed
JUnit tests during the entire attempt over the number of total
JUnit tests for the task. For example, if a participant passed
11/13 JUnit tests in ValidPhoneNumber at some point during
the attempt, then the pass rate is 85% for this attempt. Both
Table III and Table IV are sorted in descending order by
average pass rate.

5

From Table III, we find that eight participants attempted the
ValidEmail task and five of them successfully passed all JUnit
tests, making this the third most passed task with an average
pass rate of 86%.

Table IV categorizes the tasks (Type) and shows the number
of tasks in each category (#Tasks), the average pass rate of
attempts on these tasks (Avg %), the total number attempts
on these tasks (#Attempt) as well as the number of attempts
that achieved 100% pass rate (#100%). It also demonstrates
that participants performed best in validation tasks, as all
validation tasks were solved with pass rate of 78% on average,
and 46% of the successful attempts were in validation type.

Of 94 attempts, 28 succeed with 100% pass rate.
Validation tasks represented 25% of the program-
ming tasks (5/20), but represented 46% (13/28) of
the attempts that achieved a 100% pass rate on the
test cases.

B. Tools

During the study, participants were allowed to consult any
resources at their disposal within the IDE and the browser,
including web tools.

Of the 28 attempts that passed all JUnit tests, ten attempts
involved web tools. Nine participants who actively interacted
with web tools achieved a pass rate of 68% on average. They
spent 13:05 minutes on average on web tools, which made up
of 26.11% of their recorded sessions. The average for context
switching was 11.89 times, as participants had to check the
task specifications and test the regular expression strings in
Eclipse IDE. Seven participants passed more test cases with
the help of web tools, and six among them continued using
web tools for remaining tasks while the other one switched to
web tools near the end of the study and attempted no more
tasks. All the web tools that participants used support visual-
ization to a certain degree. Such visualizations can convert
regular expression strings to graphical states for users [8],
[9], and some can highlight the matching results for users
in debugging environments [10], [11].

Six participants used the built-in debugger in Eclipse IDE
on seven total attempts. These attempts achieved a 48% pass
rate on average. Most participants who used it in one attempt
did not return to it in subsequent attempts; only one participant
accessed it twice.

Participants who consulted web tools to visualize
regular expression behavior passed more tests than
those who did not consult web tools (67.6% vs.
54.6% in terms of pass rate).

C. Sources of Information

For information sources online, we classify the web-
sites into two categories: Q&A sites (e.g., Stack Overflow,
online forums) and D&T sites (official documentation and
official/third-party tutorials), similar to prior work [19]. After
consulting an online source, we looked at the percentage of

TABLE IV
TYPE OF TASKS AND AVERAGE PASS RATES

Type #Tasks Avg % #Attempt #100%
Validation 5 78% 26 13
Extraction 15 48% 68 15
Total 20 56% 94 28

TABLE V
ONLINE SOURCES & AVERAGE IMPROVEMENT IN PASS RATE & AVERAGE

PASS RATE

Online Sources avgImp avgPass #Attempt
Q&A sites only 24% 50% 7
D&T sites only 35% 62% 13
Both Q&A and D&T sites 31% 51% 57
None 29% 70% 17
Total 94

improvement in the passing test cases. For example, par-
ticipant #17 was working on the ValidEmail task and was
passing 4/8 tests. This participant did a search for, “regular
expression java valid email” and clicked on a result for
http://www.mkyong.com. After looking up information in this
website, the participant returned to the IDE and modified the
regular expression directly. The modified regular expression
achieved 6/8 passing tests, resulting in a 25% improvement in
pass rate.

Table V lists the categories (Online Sources), their asso-
ciated average improvement in pass rate (avgImp) and aver-
age pass rate after consulting each of several web sources
(avgPass), and the number of attempts (#Attempt) for each
category that was consulted. Of the 29 participants, 28 used
search during their problem solving tasks. The most common
resources consulted were Stack Overflow (visited 677 times),
OracleDocs (visited 282 times) and Vogella (visited 92 times).

Participants who only consulted official documentation and
tutorials for regular expressions improved their pass rate in
JUnit tests by 35% on average, which provided the highest
improvement in pass rate. Attempts being solved by consulting
only Q&A sites led to the lowest improvement in pass rate;
those being solved without consulting any online sources
achieved highest pass rate on average. A potential explanation
for this phenomenon is that participants who only relied on
Q&A sites were not engaged in learning and thinking as
actively as those who consulted documentation and tutorials,
and those who did not search may have prior experience with
regular expressions.

Figure 6 reveals the distribution of the pass rates (Fig-
ure 6(a)) and the improvement in pass rates (Figure 6(b))
for each category. In violin plots, the white dots represent
the median values, and the width of the grey areas reflect
the distribution shape of the data. For example, Figure 6(b)
indicates that about half of these attempts that only consulted
Q&A sites did not improve their pass rate at all, as the white
dot is close to 0.0 with the highest probability that data points
will take on the given value.

6

http://www.mkyong.com
www.stackoverflow.com
https://docs.oracle.com/javase/7/docs/api/overview-summary.html
http://www.vogella.com/tutorials/JavaRegularExpressions/article.html

0.0

0.2

0.4

0.6

0.8

1.0

● ●

●

●

Online Sources v.s. Pass Rate

Online Sources

Pa
ss

 R
at

e

Both Q&A D&T None

(a) Online Sources vs. Pass Rate

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

Online Sources v.s. Improvement in Pass Rat

Online Sources

Im
pr

ov
em

en
t i

n
Pa

ss
 R

at
e

Both Q&A D&T None

(b) Online Sources vs. Improvement in Pass Rate

Fig. 6. Pass rates and pass rate improvements for attempts that access various
online sources

Attempts being solved without consulting any sites achieved
highest median pass rate . Attempts being solved by consulting
only documentation and tutorial sites achieved 2nd highest
pass rate and gained the highest improvement in pass rate in
terms of median. Although attempts being solved by consult-
ing only Q&A sites had relatively the same median pass rate
as attempts being solved by consulting both sites, they gained
lower median improvement in pass rate than the latter.

Participants who used official documentation and
tutorials for regular expressions and did not consult
Q&A sites, achieved the highest improvement in the
correctness of their regular expressions (i.e., 35%,
after consulting the online resource).

D. First Attempts

We recognized seven activities performed by participants:
guess (compose from nothing), search, copy and paste
(“C&P”), modify the regular expression directly (this process
will not result in an empty string), test, debug, and use of web
tools. Of the 94 attempts, 58 started with guessing in the IDE
(Guess, 49 attempts) or in web tools (Web Tools, 9 attempts).
Of those, 20 ultimately achieved success, resulting in a 34.5%
success rate. The remaining 36 attempts started with Search.
Of these, eight ultimately achieved success, resulting in a
22.2% success rate. This indicates that participants who guess

and try to solve the task first, rather than searching for existing
regular expression examples or solutions, are more likely to
pass all JUnit tests.

Participants who tried to compose a regular expres-
sion first instead of searching for a solution first are
more likely to pass all the test (34.5% success vs.
22.2% success).

E. Copy and Paste

Participants sometimes copied regular expressions directly
from search results, pasting them into the IDE. Copy and paste
(C&P) was used in 33 of 94 attempts, and the average pass
rate on these attempts was 45% (compared to an average pass
rate of 62% for non-C&P attempts). Participants who used the
C&P strategy improved their pass rates by 27% on average.

The most frequent online resources participants copied from
were Stack Overflow, OracleDocs, Vogella, TutorialsPoint and
Regular-Expressions. Participants copied possible solutions
from miscellaneous Q&A websites as well.

Participants tested the copy-pasted regular expression
strings directly as solutions in some cases (after a copy
and paste, 36.3% of the time the regular expression was
tested immediately after pasting), but more often participants
modified the regular expression strings before testing (after a
copy and paste, 57.7% of the time the regular expression was
directly modified and then tested). Participants often modified
the copied and pasted regular expressions to simply resolve
compile errors (29 of 80 C&P from websites to Eclipse).

Reuse of existing code improved pass rates on
attempts by 27% on average. However, copied and
pasted contents in 36.3% C&P interactions (from
websites to Eclipse) were slightly modified in syntax
to correct compile error.

VI. RESULTS - RQ2

After following the persona vector identification process de-
scribed in Section IV-B, we converged on a set of four unique
personas: Novice tester, Knowledgeable tester, Knowledgeable
and Intermediate (Persona and Persona Vector in Table VI).
Table VI also contains the description of each persona (De-
scription). As Table VI shows, the most frequent personas
were the intermediates, but the distribution of persona types
across the participants is relatively even.

Average descriptive characteristics, along with the interquar-
tile ranges (IQR), for each persona are further listed in
Table VII. Column AvgRegexExp and AvgJUnitExp introduces
the average self-rated experience with regular expression and
JUnit tests in pre-survey, where 0 maps to “I have never
heard of them” and 4 maps to “I am an expert”. AvgJavaExp
introduces personas’ self-reported years in programming with
Java in pre-survey. This table also contains the average pass
rate achieved (AvgPassRate), the average frequency of Google
searches (AvgSearches), the average frequency of copy and
paste (AvgC&P) and the average frequency of Stack Overflow

7

TABLE VI
SUMMARY OF PERSONA IDENTIFICATION AND DESCRIPTION

Persona Persona Vector Description

Novice tester (7/29) < 0, 0/L, H > No prior knowledge, frequently test,
< 0, H, H > very likely (5/7) to significantly improve pass rate

Knowledgeable tester (5/29) < H, 0/L, H > Sufficient prior knowledge, frequently test,
< H, H, H > about even chance (3/5) to significantly improve pass rate

Knowledgeable (8/29) < H, 0/L, L > Sufficient prior knowledge, rarely test,
< H, H, L > even chance (4/8) to significantly improve pass rate

Intermediate (9/29) < L, 0/L, L > Insufficient prior knowledge, rarely test,
< L, H, L > very likely (7/9) to slightly/no improve pass rate

TABLE VII
PERSONA STATISTICAL SUMMARY

Persona RegexExp JUnitExp JavaExp PassRate Search C&P Stack Docs
Avg IQR Avg IQR Avg IQR Avg IQR Avg IQR Avg IQR Avg IQR Avg IQR

Novice tester 1.9 0.5 1.1 0 3.4 3.5 44.1% 23.5% 7.7 3.0 1.4 3.0 9.7 8.0 8.1 9.0
Knowledgeable tester 1.6 1.0 2.2 2.0 2.3 1.0 58.8% 32.0% 11.0 3.0 3.0 3.0 15.3 13.5 4.4 4.8
Knowledgeable 2.6 1.0 1.3 0 4.3 2.0 63.5% 44.0% 7.0 6.0 4.8 4.8 1.8 2.5 1.1 1.0
Intermediate 2.2 1.0 2.1 2.0 2.8 2.0 37.7% 12.0% 11.9 7.0 4.7 8.0 10.9 7.6 4.7 4.8

visits and documentation and tutorial site visits (AvgStack,
AvgDocs). These factors reflect personas’ overall correctness,
search and copy/paste behaviors, and preference in sources of
information. In Table VII, we can see that the knowledgeables
were the most successful in terms of pass rate, followed
by the knowledgeable testers, novice testers, and finally the
intermediates. There is no significant relationship between
personas and their experience in JUnit observed in this study.

Novice tester (7/29): Novice testers claimed that they have
some experience with regular expressions and Java (3rd in
AvgRegexExp, 2nd in AvgJavaExp), and they were observed
spending much of their time reading documentation and tuto-
rial sites (highest in AvgDocs). While they didn’t achieve any
success (AFPR of 0%) in the beginning of every attempt, they
did eventually achieve some success (3rd in AvgPassRate) and
seemed to learned about fundamental topics.

Knowledgeable tester (5/29): Though the knowledgeable
testers had the lowest average regular expression experience
and lowest average Java experience, they appeared to quickly
gain an understanding of regular expressions in Java and
achieved success through heavy tinkering (2nd in AvgPass-
Rate). The knowledgeable testers tended to favor looking
for sample solutions over learning from documentation and
tutorial sites (highest in AvgStack and 3rd in AvgDocs).

Knowledgeable (8/29): There were eight observed knowl-
edgeable persona, and they achieved the highest average pass
rate with 63.5%. They had the highest average regular expres-
sion experience and highest average Java experience, suggest-
ing that familiarity with the language being used with regular
expression development is as important as regular expression
experience itself. Knowledgeables further had the lowest av-
erage Google searches, lowest average Stack Overflow site
visits and lowest average documentation and tutorial site visits,
suggesting preexisting knowledge of regular expressions in

Java. Knowledgeable usually searched with specific keywords,
such as “regex lookahead”. This observation is supported by a
prior work that experts tended to look for very specific types
of information [20]. The knowledgeable persona produced the
highest average copy-and-paste, and an potential explanation
is the usage of web tools during composition, which require
copy-and-paste between web tools and Eclipse IDE.

Intermediate (9/29): Despite the intermediates being fa-
miliar with regular expressions (2nd in AvgRegexExp), they
did not achieve great success (lowest in AvgPassRate). The
intermediates tended to favor Google searching Q&A sites
like Stack Overflow (highest in AvgSearch and 2nd in
AvgStack), and would frequently copy-and-paste regular ex-
pression strings (2nd in AvgC&P).

VII. DISCUSSION

The combination of surveys and video logs has led to
insights regarding the performance of participants, and what
tools and problem solving strategies they used during regular
expression composition.

A. Suggestions for regular expression writers

We suggest all developers come up with a solution before
searching for solutions. We also suggest searching for regu-
lar expression related information, like the usage of special
metacharacters, on official documentations, rather than for
regular expressions to reuse; in our study, these behaviors led
to higher success.

For novice testers and knowledgeable testers, we recom-
mend using web tools. Compared to Eclipse IDE and JUnit
tests, web tools that support dynamic testing can return match-
ing results immediately. In addition, web tools usually provide
both the regular expression tester and documentation on the
same window, which can reduce context switching for users.
Since novice testers and knowledgeable testers test programs

8

and check documentation frequently, they are very likely to
benefit from using web tools.

We encourage the knowledgeable testers and the interme-
diates to think critically and adopt more documentation and
tutorial sites as they search for online sources. Reusing existing
code can improve pass rates on an attempt by 27% (Sec-
tion V-E); however, our results show that people who learned
from documentation and tutorial sites were able to improve
the pass rates by 31%-35%. As demonstrated in Section V-D,
participants who came up with their own solutions prior to
looking for existing code were 1.7 times more likely to pass
all the JUnit tests than those who searched first.

B. Implications for tool developers

Visualization, as provided by web tools, seemed to help
developers with composition (Section V-B). To supplement
web tools [8]–[10] that visualize regular expressions, there is
a regular expression plugin for Eclipse IDE, QuickREx [21],
that supports java.util.regex. This plugin suggests input
metacharacters and highlights matching result for users, as
most web tools do. However, no documentation search feature
is available within the plugin. Beck, et al. concluded that regu-
lar expression experts agree that visual encoding of the regular
expression is beneficial [22]. Other work on visualization also
pointed out that visualization can support the task solving
process by displaying useful information in a condensed way
[23], enhance the programmer’s understanding of the process
of the execution [24], and serve as an external memory aid to
help programmers tracking runtime execution [25]. Moreover,
visualization can significantly help with conquering the design
barrier where programmers have cognitive difficulties with vi-
sualizing solutions to programming problems [26]. Our results
support these findings. Therefore, we suggest that features
such as visualization and quick search for documentation
should be integrated into the IDE to facilitate regular expres-
sion comprehension and reduce context switching for users.
Tools for different languages that support regular expressions
should be developed as well.

We also observed that some participants faced challenges
in migrating regular expressions from web tools or sites they
visited to Java due to differences in programming language
representations of regular expression. As mentioned in Sec-
tion V-E, 29 of 80 C&P from websites to Eclipse were edited
to address the compile errors. For example, a single backslash
in Python needs to be edited to a double backslashes in Java.
This suggests that a language migration tool would be helpful.

VIII. THREATS TO VALIDITY

Conclusion: Some tasks can produce a non-zero pass rate
when tested against an empty regular expression. This situation
might lead to an overestimation of participants’ performance.
In this study, two participants tested three tasks in total against
an empty regular expression and gained 32.7% pass rate in
average. This special case is rare, so the influence is small.

Editing and testing activities within web tools are not part
of the IDE flow and thus not captured in our results.

Construct: Participants knew they were being observed
which may have influenced their searching and composition
behaviors.

Internal: Most participants attempted multiple tasks, yet
we did not consider task order in the analysis of the results.
It is possible that learning effects influenced pass rates of
tasks attempted later in the study. However, as the tasks were
assigned in random order, the impact should be distributed
across all tasks.

External: Participants were students, and while students
write regular expressions with some frequency, the results
may not generalize to other populations. A replication with
a more diverse set of developers is needed. In addition,
years in programming (non-professionally) might not be the
best indicator to measure the programming experience for
students [27].

The 20 tasks in the case study have tasks with solutions that
are less complex than regular expressions in the wild. Future
studies will use tasks whose solutions are reflective of regular
expressions found in source code repositories, and thus may
not be representative of tasks for which programmers would
use regular expressions. However, Host, et al. concluded that
there is no significant difference between the correctness of
students and professionals [28]. Runeson also confirmed that
first year students, graduate students and industry profession-
als produced the same improvements between the different
Personal Software Process (PSP) levels [29].

IX. RELATED WORK

Regular Expression and Users: Several studies have inves-
tigated approaches to expedite regular expression processing
on a large amount of text [30], [31]. However, few studies have
focused on regular expression users, despite the fact that reg-
ular expressions are error-prone and hard to comprehend [4],
[5]. Studies that include observations of users and regular
expressions use survey [4], crowd-sourcing [5], or dynamic
program analysis [7] as methodologies.

In this work, we observe programmer behavior directly us-
ing screen capture to better understand the tools and strategies
developers use during regular expression composition.

Regular Expression Comprehension: Chapman and Stolee
explored the contexts in which the professional developers use
regular expressions, the most commonly used regular expres-
sion language features in Python, and the regular expression
behavioral similarity among projects [4]. Through a survey
of developers, the study concluded that developers complain
about regular expressions being hard to read and write. A
follow-up study on regular expression understandability [5]
concluded that a regular expression’s DFA is positively corre-
lated with comprehension.

In this work, the median DFA size of the sample solutions
are smaller than the regular expressions in the wild (i.e., 14
nodes vs. 28 nodes [7]). This indicates that the tasks in this
study are less complex, but were designed intentionally since
the participants have a short time to work on the tasks.

9

IDE Interactions: Programmers work closely with Inte-
grated Development Environments (IDEs), and Eclipse is a
popular IDE for Java [32], [33]. A guide on how to collect and
analyze general IDE usage data, which we used to guide the
logged events in our study (Section IV-A), suggests recording
commands invoked, files viewed, mouse clicks, and add-on
tools used [34].

The choice to use screen capture software and transcribe
logged events is not without precedence in the literature. To
study programmers’ actions, navigations and choices during
software maintenance tasks, Ko, et al. transcribed 12 hours of
screen-captured video across 10 developers’ work, and logged
each developer action [35].

Copy and Paste: Copy/paste is a popular technique to
assist solving programming problems [36]–[38] as it can
speed up the programming process [38]. Mann identified
four copy/paste operations to address different scenarios in
programming process, which are move, copy-identical, copy-
and-change, and copy-once [39].

We investigate how participants use the copy and paste
technique in regular expression composition, and compare this
approach with direct editing performed by participants.

Visualization: Studies have shown that the lack of under-
standing of concepts/structures/syntax poses the most difficul-
ties for programmers to solve a programming problem [24],
[40]. To assist the programmer’s understanding of the runtime
program behavior, visualization tools have been suggested [24]
and developed for educating purpose, such as Whyline [25],
Storytelling Alice [41] and Gidget Game [42]. In the context
of regular expressions, the website regexper.com [9] provides
an automata-based visualization for regular expressions.

In this study, we explore what tools participants adopt
during regular expression composition, and whether the web-
based regular expression testers (web tools) that support visu-
alization of regular expressions better support composition.

Code Search and Problem Solving: Various studies have
surveyed participants about why they use web search, their
tools, and their selection criteria for code [43]–[45]. Profes-
sionals working in companies [46], [47] and students learning
programming [44] are involved as participants in these stud-
ies. Some studies focused on directly observing participants’
behaviors [48], while some other studies focused on collecting
and analyzing search logs [19], [46], with participant solving
the pre-selected tasks.

Researchers also studied the search activities within IDEs
and developed tools to facilitate searches. An extension called
Bing Developer Assistant has been developed for Microsoft
Visual Studio, which can recommend previously written API
sample code mined from public repositories and Q&A sites
to developers, and hence boost their productivity by reducing
context switches [49].

In this work, participants use search as part of their problem
solving strategies; we explore how often and whether search
leads to success.

Personas in Software Engineering: Personas are an in-
teraction design technique that establish fictional users of a

system. The practice of personas was originally used from a
marketing perspective [50]; however, Alan Cooper helped to
shift their use towards software design and development [51].
Under Cooper’s use of personas, designers focus on user goals
and activity scenarios to guide software design [52], [53].

Another use of personas in software engineering is to
support analysis of developers’ behavior. Dubey, et al. ex-
plored testers’ testing style and performance in crowdsourced
testing and categorized them into six personas based on three
quantitative metrics: average scenarios per feature, percentage
of augmented scenarios and percentage of invalid/extreme
input values [18]. They also introduced hybrid personas in
this study [18]. Stylos and Clarke adapted three personas
from prior work [54], which are defined by a Visual Studio
usability group based on participants’ behavior [55]. They
explored how different personas react to various constructors
and suggest future work on comparing debugging strategies
from the perspective of personas [55]. Ford, et al. provided
a data-driven approach to identify clusters to create seven
personas by interviewing and surveying software engineers on
how they comprehend their tasks, collaborate with others and
how they spend time [56].

In our work we adopt the use of observation-oriented per-
sona development to better understand developers’ behaviors
during regular expression development.

X. CONCLUSION

Participants vary greatly in their programming experience
and programming habits. In our study of 29 participants
working on regular expression tasks, we revealed the strategies
adopted, such as search, copy and paste, and use of web tools.
We learned the participants performed best on validation tasks.
We recommend guessing and composing solutions before
searching, and learning from the documentations and tutorials
instead of the existing sample solutions.

Further, we attributed personas to each of the research par-
ticipants, grouping all 29 of them into four distinct archetypes.
These four personas exemplify the behavioral patterns ob-
served in the participants, and allow us to investigate which
strategies used by each persona were effective or not. We
found that the personas who tended to favor copy and pasting
answers from Q&A sites were less successful than those who
tried to learn from documentations and tutorials, or used heavy
tinkering.

For future work, a study that requires participants to think-
aloud is suggested to understand any learning barriers for
regular expression composition. Another direction of future
work is to explore the evolution of the regular expressions
and technical mistakes made during regular expression com-
position.

ACKNOWLEDGEMENTS

We thank Peipei Wang for analysis assistance on regular
expression complexity. This work is supported in part by the
NSF SHF #1714699 and #1645136, and the Harpole-Pentair
endowment to Iowa State University.

10

REFERENCES

[1] T. Stubblebine, Regular Expression Pocket Reference, 2nd ed. Se-
bastopol, CA, USA: O’Reilly & Associates, Inc., 2007.

[2] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu, “Fully automatic
wrapper generation for search engines,” in Proceedings of the 14th
International Conference on World Wide Web. ACM, 2005, pp. 66–75.

[3] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and
A. Di Pietro, “An improved dfa for fast regular expression matching,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 5, pp. 29–40, Sep. 2008.

[4] C. Chapman and K. T. Stolee, “Exploring regular expression usage
and context in python,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: ACM, 2016, pp. 282–293. [Online]. Available:
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/2931037.2931073

[5] C. Chapman, P. Wang, and K. T. Stolee, “Exploring regular expression
comprehension,” in 32nd IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE 2017, Piscataway, NJ, USA,
2017, pp. 405–416. [Online]. Available: http://dl.acm.org/citation.cfm?
id=3155562.3155616

[6] Spishak, Eric and Dietl, Werner and Ernst, Michael D., “A Type
System for Regular Expressions,” in Proceedings of the 14th Workshop
on Formal Techniques for Java-like Programs, ser. FTfJP ’12.
New York, NY, USA: ACM, 2012, pp. 20–26. [Online]. Available:
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/2318202.2318207

[7] P. Wang and K. T. Stolee, “How well are regular expressions tested
in the wild?” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 668–678. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3236072

[8] “Debuggex: Online visual regex tester. javascript, python, and pcre.”
https://www.debuggex.com.

[9] “Regular expression visualizer using railroad diagrams.” https://regexper.
com.

[10] “Online regex tester, debugger with highlighting for php, pcre, python,
golang and javascript.” https://regex101.com.

[11] “Regexr: Learn, Build, & Test RegEx,” https://regexr.com/.
[12] “Regex golf,” https://alf.nu/RegexGolf.
[13] “Regex one,” https://regexone.com.
[14] “Regex crossword,” https://regexcrossword.com.
[15] A. Rosenfeld, A. Ade-Ibijola, and S. Ewert, “Regex parser ii: Teaching

regular expression fundamentals via educational gaming.” 09 2016.
[16] R. Cox, “Regular expression matching in the wild,” URL:http/ /swtch.

com/∼rsc/regexp/regexp3.html, 2010.
[17] J. Pruitt and J. Grudin, “Personas: Practice and theory,” in Proceedings

of the 2003 Conference on Designing for User Experiences, ser. DUX
’03. New York, NY, USA: ACM, 2003, pp. 1–15. [Online]. Available:
http://doi.acm.org/10.1145/997078.997089

[18] A. Dubey, K. Singi, and V. Kaulgud, “Personas and redundancies
in crowdsourced testing,” in 12th International Conference on Global
Software Engineering, ser. ICGSE ’17, Piscataway, NJ, USA, 2017, pp.
76–80. [Online]. Available: https://doi-org.prox.lib.ncsu.edu/10.1109/
ICGSE.2017.7

[19] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code,” in SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’09, 2009, pp. 1589–1598. [Online].
Available: http://doi.acm.org/10.1145/1518701.1518944

[20] A. von Mayrhauser and A. M. Vans, “Program understanding behavior
during debugging of large scale software,” in Papers Presented at the
Seventh Workshop on Empirical Studies of Programmers, ser. ESP ’97.
New York, NY, USA: ACM, 1997, pp. 157–179. [Online]. Available:
http://doi.acm.org/10.1145/266399.266414

[21] “Quickrex plugin,” https://github.com/netceteragroup/quickrex.
[22] F. Beck, S. Gulan, B. Biegel, S. Baltes, and D. Weiskopf, “Regviz:

Visual debugging of regular expressions,” in Companion Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014, pp. 504–507.

[23] J. H. Larkin and H. A. Simon, “Why a diagram is (sometimes) worth
ten thousand words,” Cognitive Science, vol. 11, no. 1, pp. 65–100,
1987. [Online]. Available: http://dx.doi.org/10.1111/j.1551-6708.1987.
tb00863.x

[24] I. Milne and G. Rowe, “Difficulties in Learning and Teaching Pro-
grammingViews of Students and Tutors,” Education and Information
Technologies, vol. 7, pp. 55–66, 2002.

[25] A. J. Ko and B. A. Myers, “Designing the whyline: A debugging
interface for asking questions about program behavior,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’04. New York, NY, USA: ACM, 2004, pp. 151–158.
[Online]. Available: http://doi.acm.org/10.1145/985692.985712

[26] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-user
programming systems,” in Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing, ser. VLHCC ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 199–206.
[Online]. Available: http://dx.doi.org/10.1109/VLHCC.2004.47

[27] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg,
“Measuring and modeling programming experience,” Empirical Softw.
Engg., vol. 19, no. 5, pp. 1299–1334, Oct. 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10664-013-9286-4

[28] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects—a
comparative study of students and professionals in lead-time impact
assessment,” Empirical Software Engineering, vol. 5, no. 3, pp.
201–214, Nov 2000. [Online]. Available: https://doi.org/10.1023/A:
1026586415054

[29] P. Runeson, “Using students as experiment subjects an analysis on
graduate and freshmen student data,” in Proceedings 7th International
Conference on Empirical Assessment Evaluation in Software Engineer-
ing, 2003, pp. 95–102.

[30] Baeza-Yates, Ricardo A. and Gonnet, Gaston H., “Efficient text search-
ing of regular expressions,” in Algorithms and Data Structures, Dehne,
F. and Sack, J. -R. and Santoro, N., Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1989, pp. 1–2.

[31] Baeza-Yates, Ricardo A. and Gonnet, Gaston H., “Fast text searching
for regular expressions or automaton searching on tries,” J. ACM,
vol. 43, no. 6, pp. 915–936, Nov. 1996. [Online]. Available:
http://doi.acm.org/10.1145/235809.235810

[32] G. Goth, “Beware the march of this ide: Eclipse is overshadowing other
tool technologies,” IEEE Software, vol. 22, no. 4, pp. 108–111, July
2005.

[33] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse ide?” IEEE Softw., vol. 23, no. 4, pp. 76–83,
Jul. 2006. [Online]. Available: http://dx.doi.org/10.1109/MS.2006.105

[34] W. Snipes, E. Murphy-Hill, T. Fritz, M. Vakilian, K. Damevski, A. Nair,
and D. Shepherd, “A practical guide to analyzing ide usage data,” in The
Art and Science of Analyzing Software Data, 2015.

[35] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An
exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks,” IEEE Trans. Softw.
Eng., vol. 32, no. 12, pp. 971–987, Dec. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2006.116

[36] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in Working Conference on Reverse Engineering,
2006, pp. 253–262.

[37] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl,
“Assessing the benefits of incorporating function clone detection in a
development process,” in International Conference on Software Mainte-
nance, Oct 1997, pp. 314–321.

[38] K. Narasimhan and C. Reichenbach, “Copy and paste redeemed,” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Nov 2015, pp. 630–640.

[39] Z. A. Mann, “Three public enemies: cut, copy, and paste,” pp. 31–35,
July 2006.

[40] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A study of the
difficulties of novice programmers,” SIGCSE Bull., vol. 37, no. 3, pp.
14–18, Jun. 2005. [Online]. Available: http://doi.acm.org.prox.lib.ncsu.
edu/10.1145/1151954.1067453

[41] C. Kelleher, R. Pausch, and S. Kiesler, “Storytelling alice motivates
middle school girls to learn computer programming,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’07. New York, NY, USA: ACM, 2007, pp. 1455–
1464. [Online]. Available: http://doi.acm.org.prox.lib.ncsu.edu/10.1145/
1240624.1240844

[42] M. J. Lee and A. J. Ko, “Investigating the role of purposeful goals on
novices’ engagement in a programming game,” in 2012 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC),
Sept 2012, pp. 163–166.

11

http://doi.acm.org.prox.lib.ncsu.edu/10.1145/2931037.2931073
http://dl.acm.org/citation.cfm?id=3155562.3155616
http://dl.acm.org/citation.cfm?id=3155562.3155616
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/2318202.2318207
http://doi.acm.org/10.1145/3236024.3236072
https://www.debuggex.com
https://regexper.com
https://regexper.com
https://regex101.com
https://regexr.com/
https://alf.nu/RegexGolf
https://regexone.com
https://regexcrossword.com
http//swtch.com/~rsc/regexp/regexp3.html
http//swtch.com/~rsc/regexp/regexp3.html
http://doi.acm.org/10.1145/997078.997089
https://doi-org.prox.lib.ncsu.edu/10.1109/ICGSE.2017.7
https://doi-org.prox.lib.ncsu.edu/10.1109/ICGSE.2017.7
http://doi.acm.org/10.1145/1518701.1518944
http://doi.acm.org/10.1145/266399.266414
https://github.com/netceteragroup/quickrex
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00863.x
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00863.x
http://doi.acm.org/10.1145/985692.985712
http://dx.doi.org/10.1109/VLHCC.2004.47
http://dx.doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1023/A:1026586415054
https://doi.org/10.1023/A:1026586415054
http://doi.acm.org/10.1145/235809.235810
http://dx.doi.org/10.1109/MS.2006.105
http://dx.doi.org/10.1109/TSE.2006.116
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/1151954.1067453
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/1151954.1067453
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/1240624.1240844
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/1240624.1240844

[43] S. E. Sim, C. L. A. Clarke, and R. C. Holt, “Archetypal source code
searches: a survey of software developers and maintainers,” in Program
Comprehension, 1998. IWPC ’98. Proceedings., 6th International Work-
shop on, Jun 1998, pp. 180–187.

[44] S. E. Sim, M. Umarji, S. Ratanotayanon, and C. V. Lopes, “How
well do search engines support code retrieval on the web?” ACM
Trans. Softw. Eng. Methodol., vol. 21, no. 1, pp. 4:1–4:25, Dec. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2063239.2063243

[45] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for source
code,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 3, pp. 26:1–26:45,
Jun. 2014. [Online]. Available: http://doi.acm.org/10.1145/2581377

[46] Brandt, Joel and Dontcheva, Mira and Weskamp, Marcos and Klemmer,
Scott R., “Example-centric Programming: Integrating Web Search
into the Development Environment,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’10.
New York, NY, USA: ACM, 2010, pp. 513–522. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753402

[47] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search
for code: A case study,” in Foundations of Software Engineering,
ser. ESEC/FSE 2015, 2015, pp. 191–201. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786855

[48] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An examination
of software engineering work practices,” in Conference of the Centre for
Advanced Studies on Collaborative Research, ser. CASCON ’97, 1997.
[Online]. Available: http://dl.acm.org/citation.cfm?id=782010.782031

[49] H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, and W. Hu, “Bing
developer assistant: Improving developer productivity by recommending
sample code,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 956–961. [Online].

Available: http://doi.acm.org/10.1145/2950290.2983955
[50] N. Mikkelson and W. O. Lee, “Incorporating user archetypes into

scenario-based design,” in Proc. UPA, 2000.
[51] A. Cooper, The Inmates Are Running the Asylum: Why High Tech

Products Drive Us Crazy and How to Restore the Sanity (2Nd Edition).
Pearson Higher Education, 2004.

[52] L. Schneidewind, S. Hörold, C. Mayas, H. Krömker, S. Falke,
and T. Pucklitsch, “How personas support requirements engineering,”
in International Workshop on Usability and Accessibility Focused
Requirements Engineering, ser. UsARE ’12, Piscataway, NJ, USA,
2012, pp. 1–5. [Online]. Available: http://dl.acm.org.prox.lib.ncsu.edu/
citation.cfm?id=2667081.2667082

[53] F. Anvari, D. Richards, M. Hitchens, and M. A. Babar, “Effectiveness
of persona with personality traits on conceptual design,” in 37th
International Conference on Software Engineering - Volume 2, ser.
ICSE ’15, Piscataway, NJ, USA, 2015, pp. 263–272. [Online]. Available:
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=2819009.2819048

[54] S. Clarke, “Measuring api usability,” vol. 29, pp. S6–, 05 2004.
[55] J. Stylos and S. Clarke, “Usability implications of requiring parameters

in objects’ constructors,” in 29th International Conference on Software
Engineering, ser. ICSE ’07, Washington, DC, USA, 2007, pp. 529–539.
[Online]. Available: http://dx.doi.org.prox.lib.ncsu.edu/10.1109/ICSE.
2007.92

[56] D. Ford, T. Zimmermann, C. Bird, and N. Nagappan, “Characterizing
software engineering work with personas based on knowledge worker
actions,” in Proceedings of the 11th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ser. ESEM ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 394–403. [Online].
Available: https://doi-org.prox.lib.ncsu.edu/10.1109/ESEM.2017.54

12

http://doi.acm.org/10.1145/2063239.2063243
http://doi.acm.org/10.1145/2581377
http://doi.acm.org/10.1145/1753326.1753402
http://doi.acm.org/10.1145/2786805.2786855
http://dl.acm.org/citation.cfm?id=782010.782031
http://doi.acm.org/10.1145/2950290.2983955
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=2667081.2667082
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=2667081.2667082
http://dl.acm.org.prox.lib.ncsu.edu/citation.cfm?id=2819009.2819048
http://dx.doi.org.prox.lib.ncsu.edu/10.1109/ICSE.2007.92
http://dx.doi.org.prox.lib.ncsu.edu/10.1109/ICSE.2007.92
https://doi-org.prox.lib.ncsu.edu/10.1109/ESEM.2017.54

	Introduction
	Research Questions
	Study Design
	Tasks
	Procedure
	Participants
	Data Description

	Analysis
	Logged Events
	Personas
	Metrics
	Persona Vector Identification

	Results - RQ1
	Overall Correctness
	Tools
	Sources of Information
	First Attempts
	Copy and Paste

	Results - RQ2
	Discussion
	Suggestions for regular expression writers
	Implications for tool developers

	Threats to Validity
	Related Work
	Conclusion
	References

