
Evaluating the Effectiveness of a Testing Checklist Intervention in
CS2: AnQuasi-experimental Replication Study

Gina R. Bai
Vanderbilt University
Nashville, TN, USA

rui.bai@vanderbilt.edu

Zuoxuan Jiang
Vanderbilt University
Nashville, TN, USA

allison.z.jiang@vanderbilt.edu

Thomas W. Price
North Carolina State University

Raleigh, NC, USA
twprice@ncsu.edu

Kathryn T. Stolee
North Carolina State University

Raleigh, NC, USA
ktstolee@ncsu.edu

ABSTRACT
Students often run into trouble when learning and practicing soft-
ware testing. Recent prior studies demonstrate that a lightweight
testing checklist that contains testing strategies and tutorial infor-
mation could assist students in writing higher-quality tests. Prior
studies also suggest that students with lower prior knowledge in
unit testing may benefit more from the checklists. However, in-
sights on the potential benefits and costs of the testing checklists
in a classroom setting are lacking. To address this, we conducted
an operational replication study in a CS2 course with 342 students
(171 from Fall 2023 and 171 from Spring 2024) who had no prior
experience in unit testing.

In this paper, we report our experience in introducing the testing
checklists as optional tool support in a CS2 course. To evaluate
the effectiveness of the testing checklists in a classroom setting,
we quantitatively analyze a combination of programming assign-
ment submissions and survey responses generated by students. Our
results suggest that students who received the testing checklists
achieved significantly higher quality in their test code, in terms of
code coverage and mutation coverage, compared to those who did
not. We also observed that the exposure to the testing checklists
in students’ early learning process encouraged students to write
more unit tests to cover possible testing scenarios.

CCS CONCEPTS
• Applied computing → Education; • Software and its engi-
neering → Software verification and validation.

KEYWORDS
unit testing, testing education, checklist

ACM Reference Format:
Gina R. Bai, Zuoxuan Jiang, Thomas W. Price, and Kathryn T. Stolee. 2024.
Evaluating the Effectiveness of a Testing Checklist Intervention in CS2: An
Quasi-experimental Replication Study. In ACM Conference on International

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0475-8/24/08
https://doi.org/10.1145/3632620.3671102

Computing Education Research V.1 (ICER ’24 Vol. 1), August 13–15, 2024,
Melbourne, VIC, Australia. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3632620.3671102

1 INTRODUCTION
Software testing is crucial to help developers detect and fix bugs in
software systems. With the availability and pervasive adoption of
convenient testing frameworks (e.g., JUnit) and agile development
methodologies (e.g. Extreme Programming and Scrum), writing unit
test cases is an increasingly common practice in industry [29, 47],
and hence an emerging topic in computer science education. Edu-
cators and researchers find that the practices of software testing
would enable students to produce cleaner code “faster than ever
before” by catching bugs early in development [58]. Studies also
report that when students write their own tests, they write better
source code [37, 52]. Wick et al. [58] suggest that unit testing is par-
ticularly helpful in students’ group projects as it could demonstrate
the correctness of the code to group members.

However, testing is also a challenging skill for students to learn.
Due to the inevitable limited duration and scale of course projects,
it is hard for students to realize the importance of testing [12, 46,
48, 51]. Educators report that many students view testing as debug-
ging [12, 48], believe the only necessary skill to perform testing
is knowing how to print debugging information [48], and not test
their programs until they are already done with development [46].
Students also exhibit lowmotivation and negative attitudes towards
testing due to the increased cognitive load [17, 34, 46, 51], as it re-
quires students to learn new concepts, new syntax, new tools and
new libraries. When practicing unit testing, students often make
mistakes such as missing boundary testing [7, 12], writing smelly
tests [10, 18], and creating tests that mismatched the program spec-
ifications [10]. Students also find it challenging to understand the
source code, determine when to stop testing, determine what code
to test, and which scenarios should be tested [9, 10].

Even if students are taught to avoid these pitfalls and apply the
many best practices of software testing, they may still forget to
apply this knowledge when writing tests (i.e., they slip [22]). To
address this, Bai et al. [9, 11] proposed offering students a testing
checklist with best practices for writing tests. This study asked
students (𝑛 = 32) to write a set of test cases with the support from
either a testing checklist or a code coverage tool (i.e., EclEmma) and
compared their coverage, mutation testing scores, and number of

https://doi.org/10.1145/3632620.3671102
https://doi.org/10.1145/3632620.3671102
https://doi.org/10.1145/3632620.3671102

ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia Gina R. Bai, Zuoxuan Jiang, Thomas W. Price, and Kathryn T. Stolee

Table 1: Summary on Study Designs of the Original Study [9] and this Study

The Original Study [9] This Study

Duration Two-hour lab session One-week course assignment
Task One Java-based unit testing project One Java-based unit testing project
Survey Required pre- and post-surveys Optional post-survey (response rate: 142/171, 83.0%)
Participants 32 students from NCSU (23 undergrads, 9 grads) 342 undergrad students from Vanderbilt University
Prior Experience 30 yes vs. 2 no, avg of 2.3 years 18 yes vs. 124 no, avg of 0.2 years (Section 3.5.1)

Control Grp 17 students (12 undergrads, 5 grads) 171 undergrad students in Fall 2023
Received a tutorial on a standard coverage tool Received a lecture on unit testing, and demo on coverage tool

Experimental Grp 15 students (11 undergrads, 4 grads)
Received a testing checklist

171 students in Spring 2024
Received a lecture on unit testing, and demo on coverage tool
Received a testing checklist (Table 3)

Compensation Extra credit for course None, it is a required course assessment

identified bugs. They found few differences between experimental
(received checklist) and control groups (received tutorial on the
code coverage tool), suggesting that a lightweight testing checklist
can be as effective as a tool and might be particularly beneficial to
students who have lower prior knowledge in unit testing. However,
this study had a number of limitations as well: it was a laboratory
study and not an authentic classroom study; it lasted only 2 hours, it
had a small sample (𝑛 = 32), and the control condition did not have
access to the information contained in the checklist. This suggests
the need for further research on the topic.

To better understand the potential benefits and costs of the test-
ing checklists in a classroom setting, in this paper, we present a
operational replication [30] of the Bai et al. checklist study [9]. Our
replication study makes a variety of changes designed to improve
the strength and generalizability of the results of the original (see
Table 1 for details), including:

(1) An authentic classroom environment (as opposed to a lab
study with students of varying prior experience)

(2) A longer activity (seven days versus one two-hour lab ses-
sion)

(3) A much larger population (10x larger)
(4) A stronger control condition (all students received a lecture

with the learning content of the checklist)
We explore the following two research questions:
RQ1: Do students who receive the checklist write better test code

than those who do not?
RQ2: Does having the checklist intervention early in the semester

improve students’ later testing performance?
Our results confirm the initial findings of Bai et al. [9, 11] that

the testing checklists could significantly improve the quality of
student-authored tests, and testing tool support does not need
to be sophisticated to be effective. Our findings also suggest that
the checklists may have had lasting impacts on students’ testing
behaviors.

2 RELATEDWORK
2.1 Educational Interventions in Testing
Software testing is critical but challenging in software development,
and it is an essential skill for computing students. The ACM suggests
that software testing should be integrated into Computer Science

and Software Engineering curricula [3]. Studies have been con-
ducted to experiment and evaluate various approaches to teaching
testing. For example, gamifying software testing practices [13, 26],
providing automated evaluation of student-authored tests [14, 55],
guiding students to conduct peer testing [25, 27], requiring students
to turn in tests before [14] or along [25, 28, 33] with their source
code.

2.2 Checklists in Education
Bai et al. [9] designed a lightweight checklist containing testing
strategies and tutorial information. To evaluate the effectiveness
of the testing checklist, they conducted a controlled study in a lab
setting with 32 graduate and undergraduate students. The study
compared the quality of student-authored test cases supported by
the testing checklists against those using the IDE’s built-in coverage
tool. They suggested that the testing checklist could “assist students
in writing high-quality tests without a steep learning curve.” In
this paper, we evaluate this testing checklist [9] in a classroom
setting, specifically a Data Structures (CS2) course. More broadly,
checklists have been perceived as a handy and effective tool for
assisting teaching and student learning [24, 45, 49], and they are
particularly helpful for inexperienced students. Marwan et al. [41]
have also reported that novice programming students achieved
higher grades on programming assignments when presented with
a checklist of subgoals that automatically tracked their progress.
Pham and colleagues [46] have found some undergraduate students
create their own ad-hoc checklists during testing.

The use of checklists to support students can be motivated from a
number of theoretical perspectives. From the perspective of scaffold-
ing theory [57, 59], the checklist may serve as scaffolding, allowing
learners to “solve a task or achieve a goal that would be beyond
[their] unassisted efforts” [59], similar to the support a human tutor
might provide. Writing robust tests with high coverage may be
beyond what some students can accomplish after a single lesson
on the topic (as in our study), and so such scaffolding can play a
key role in helping students succeed at this goal. Vygotsky argued
that these skills, which are just beyond the students’ capability to
accomplish unassisted, but within their ability to accomplish with
help, lie in the student’s Zone of Proximal Development (ZPD) [20],
and represent good opportunities for learning. Importantly, differ-
ent students may have different skill levels with respect to a subject

Evaluating the Effectiveness of a Testing Checklist Intervention in CS2: AnQuasi-experimental Replication Study ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia

like writing tests, and therefore a task that may require scaffolding
for some students, may not require scaffolding for others, and may
in fact be too difficult for others even with scaffolding.

In the medical domain, Sibbald et al. [54] ground the use of check-
lists in cognitive load theory [35, 56], which emphasizes that people
have limited working memory to process task-relevant information
(e.g., software testing strategies) while working on a task. Sibbald et
al. argue that checklists work by allowing users to offload some of
this information onto paper, freeing up working memory without
losing relevant information. While experts can use learned domain-
specific strategies and schema to reduce the cognitive load placed
on working memory, novices have not yet developed these skills,
and therefore benefit more from checklists than experts [53, 54].
In computing education, cognitive load theory has been used to
improve instructional design, by reducing the extraneous cognitive
load imposed by the design of the assignment, freeing up students’
cognitive resources for learning (e.g., through worked examples
[19, 39, 60]). Unfortunately, because the study we present in this
paper took place in an authentic classroom setting, with an out-of-
class project (see Section 3.3), we were unable to measure student’s
cognitive load during their programming task. Therefore, this study
cannot directly assess whether cognitive load is a mechanism by
which checklists support student outcomes.

Finally, checklists may support students in a similar way to sub-
goal labels, which outline the high-level steps to solving a problem,
which may generalize across problems. From a theoretical perspec-
tive, these labels help students learn important problem structure
and organize information, and they promote self-explanation of the
solution [38]. Morrison, Margulieux and colleagues demonstrated
that worked examples were particularly effective when combined
with such subgoal labels [39, 43], and subgoals labels can also be
beneficial for for code writing tasks [40, 41]. Similarly, checklists,
such as the one presented in this study (Table 3), offer students
high-level steps that are transferable across problems.

2.3 Replication Studies in CS Education
Replication studies are an important way to build stronger bodies
of evidence for scientific hypotheses, understand the impacts of
interventions on diverse populations, and identify results that fail
to replicate in new contexts. Educators [16, 42] also argue for the
importance of replication studies in computing education research
(CER), encouraging both a cultural shift [4] among the CER commu-
nity to place greater value on replication studies, as well as specific
practices to encourage replication. Despite the calls in the past
decade to increase the number of replication studies [16, 31, 42];
Hao et al. [31] systematically investigated replications in CER, and
found that between 2009 and 2018 the proportion of CER papers
that presented replication studies was about 2.38% (54/2269).

In this paper, we present a quasi-experimental operational repli-
cation study of Bai et al. [9] in order to examine the effectiveness
of a lightweight testing checklist intervention in testing education.
The similarities and differences of these two study are discussed in
Section 3.

3 METHOD: OPERATIONAL REPLICATION IN
DATA STRUCTURES (CS2) COURSE

Table 1 summarizes the similarities and differences of the context
and collected data between the previous study [9] and this study.
While there are a number of improvements over the original study
(see Section 1), we note two new limitations to our study:

• Surveys: While the original study [9] had required pre- and
post-surveys, our study had only an optional post-survey.
In the original study, student participants had an average of
2.3 years of prior experience in unit testing. Therefore, the
researchers collected students for their perceptions of unit
testing with the preliminary surveys, and gathered students’
feedback on the checklists with the post-surveys. However,
in this study, the majority of students had no or very limited
prior experience in unit testing, and hence we only deployed
the post-survey to gain insights on students’ engagement
and feedback on the checklists.

• Quasi-experimental design: We used two semesters of
students and compared data across the two semesters, rather
than using a randomized controlled trial. This was neces-
sary to carry out the experiment in an authentic classroom
setting, as it would have been neither fair nor practical to
have students in the same classroom experience different as-
signment conditions. We discuss reasons we believe the two
semesters are quite similar and comparable in Section 3.4.

While not a limitation, another important difference in this study
is that both the Control and Checklist Groups were instructed on
how to use a built-in code coverage tool, while in the original study,
the Checklist Group did not receive any instruction on how to
use this tool. Since use of the code coverage tool was lower for
the Checklist Group in the original study [9], it made conclusions
about the usefulness of the checklist compared to a coverage tool.
By contrast, we directly study the additional impact of the checklist
on top of a coverage tool.

This study received IRB approval from Vanderbilt University.

3.1 Overview of the CS2 Course
We ran this study with students who were taking a 3-credit CS2
lecture course at Vanderbilt University, a research-intensive uni-
versity in the United States. This course is a Java-based course and
is intended to further the understanding of beginning computer
science students in the analysis, design, implementation, testing,
and debugging of programs, with an emphasis on the utilization
of abstract data types and data structures to solve problems. This
course is required for all Computer Science majors and minors, and
open to non-majors, with 160-180 students per semester.

The primary components of the course consist of eleven weekly
programming projects and four exams. All projects are individ-
ual assignments, requiring students to implement the source code
(except Project #0, details in Section 3.3) and test their own im-
plementation using JetBrains IntelliJ IDEA. The class meets three
times a week for 50 minutes, and does not include a lab section.

ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia Gina R. Bai, Zuoxuan Jiang, Thomas W. Price, and Kathryn T. Stolee

Table 2: Student Information.

Freshman Sophomore Junior Senior Took CS1 Bypass CS1
(avg course grade) via AP CSA

Fall 2023 (total: 171) 45 104 16 6 101 (90.1%) 63
Spring 2024 (total: 171) 118 36 15 2 143 (89.5%) 28

3.2 Participants
Table 2 shows that the majority of students who enrolled in this CS2
course were first and second year students (Fall 2023: 149/171, 87.1%,
Spring 2024: 154/171, 90.1%). At Vanderbilt University, in order to
take the CS2 course, student can either pass a CS1 course at the
university, or bypass CS1 and directly enroll CS2 if they receive full
credit (i.e., 5/5) on Advanced Placement Computer Science A (AP
CSA) exam in secondary school. Among 171 students who enrolled
in this CS2 course in Fall 2023, 108 of them took CS1 (average course
grade: 90.1%) at Vanderbilt University, and 63 of them came in with
AP credit. In Spring 2024, 143 of 171 CS2 students took CS1 at the
university and achieved an average of 89.5% for course grade.

3.3 Task: Project #0 on Unit Testing
As prior studies [9, 11] suggest that students may benefit more
from the checklists in their early learning process, we integrated
the checklist into Project #0, which is the first programming project
of the semester and is the only project that focuses solely on unit
testing throughout the semester.

In both semesters, Project #0 was distributed to students after Lec-
ture #4, in which students learned the concept of unit testing, basic
testing strategies (e.g., equivalence class partitioning and boundary
value analysis), the syntax of JUnit 5 (e.g., test class components
and various assertions), how to use the built-in Coverage tool in
IntelliJ IDEA, and how to interpret its coverage report. All testing
strategies and tutorial information included in the testing checklists
are covered and elaborated in Lecture #4. Lecture content was the
same in both semesters.

For Project #0, students were expected to perform unit testing
on a provided Java class (StringJr.java) that includes 13 methods
simulating the behavior of String methods. Students were explicitly
instructed to test every single method, and the primary objective
is to test the class “as thoroughly as possible”. Students were also
encouraged to achieve 100% of line coverage and branch coverage.
Students had a week to complete the project, and they were re-
quired to submit their test code, StringJrTest.java, for grading. The
instructor’s solution consists of 42 unit tests.

A previous study [11] that explores students adoption of testing
checklists in a classroom setting pointed out that when the code,
program requirements, and checklist were dispersed across differ-
ent locations, students exhibited reduced willingness to adopt the
checklist due to challenges in navigating between these sources.
To address this issue, we have integrated the checklists (Table 3)
directly into the starter code as multi-line comments. This approach
aims to reduce context switching for students while working on
the assignment, suggested in prior work [11]. Students were en-
couraged to place an “X” in front of the checklist items to mark
them as completed.

Figure 1: Violin plots showing the distribution of final course
grade in CS1 for students in Control Group (101/171 in Fall
2023) vs. Checklist Group (143/171 in Spring 2024). Note that
the y-axis cuts off at 0.6 (60%).

To gain a better understanding of students’ support needs and
engagement with the checklists, we invite students in the Checklist
Group (Spring 2024) to reflect on their usage and evaluation of the
checklist in an optional post-survey during assignment submission.

3.4 Comparability of Experimental Groups
Because our study is quasi-experimental, we first endeavored to
ensure that the Fall 2023 (Control Group) and Spring 2024 (exper-
imental, Checklist Group) groups were as comparable as possible.
Both semesters offered four sections and were taught by the same
two faculty (one teaching one section and the other teaching three
sections). The course syllabi, learning objectives, assessments, lec-
ture materials, teaching staff support, amount of instructors’ and
teaching assistants’ office hours, and the adoption of Piazza, all
remained the same.

We also investigated potential differences in the populations of
students in each semester. To do so, we looked at students’ final
performance in their prior CS1 course (since our experiment took
place at the very beginning of the semester). Figure 1 revealed the
distribution of students’ course grades in CS1 for those that took
the course. The distributions are nearly identical (𝑈 = 7732.5,
𝑝 = .986, 𝑟𝑟𝑏 = .001). Therefore, the primary difference between
students in our two conditions is the proportion who took AP CSA.
While students who took the CS1 course had experience submitting

Evaluating the Effectiveness of a Testing Checklist Intervention in CS2: AnQuasi-experimental Replication Study ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia

Table 3: The testing checklist that integrated into the starter code as multi-line comments. Adapted from the original study [9].

Test Case Checklist
Each test case should:
□ be executable (i.e., it has an @Test annotation and can be run via “Run as JUnit Test”)
□ have at least one assert statement or assert an exception is thrown.
□ evaluate/test only one method

Each test case could:
□ be descriptively named and commented
□ If there is redundant setup code in multiple test cases, extract it into a common method (e.g., using @BeforeEach)
□ If there are too many assert statements in a single test case (e.g., more than 5), you might split it up so each test evaluates one behavior.

Test Suite Checklist
The test suite should:
□ have at least one test for each requirement
□ appropriately use the setup and teardown code (e.g., @BeforeEach, which runs before each @Test)
□ contain a fault-revealing test for each bug in the code (i.e., a test that fails)
□ For each requirement, contain test cases for:

□ Valid inputs □ Boundary cases □ Invalid inputs □ Expected exceptions
To improve the test suite, you could:
□ measure code coverage using an appropriate tool, such as “Run with Coverage” in IntelliJ. Inspect uncovered code and write tests as appropriate.

their source to an online auto-grading platform, and interpreting
the auto-generated test results (which indicated pass/fail outcomes
with highlighted differences between actual output and expected
output), the CS1 course does not explicitly teach students testing
strategies or expect them to perform unit testing. Students with
a score of 5/5 on the AP CSA exam should be, if anything, more
advanced and more motivated than students who did not come
in with this credit. Therefore, we argue that any differences in
performance on Project #0 that favor the experimental group are
likely due to the intervention, rather than differences between
the populations. Further, our results in Section 4.2 also provide
meaningful evidence that these two populations were comparable,
and effects we see are due to the checklist intervention, rather than
inherent differences between semesters. However, we discuss the
potential limitations to this quasi-experimental comparison at the
beginning of Section 3.

3.5 Data Analysis
3.5.1 Survey Responses. In total, 142 of 171 students completed
the optional post-survey via Qualtrics (Figure 2). Among these 142
students, 124 of them self-reported to have no prior experience
(0 years) in unit testing, 13 students indicated they had one year of
experience in unit testing, and five claimed two years of experience.
On average, students had 0.16 years of prior experience in unit
testing.

For Q6, we converted 5-point Likert scale to numbers and treat
them as interval-scaled data [32], where 1 maps to the lowest score
(i.e., “Not at all helpful”), and 5 maps to the highest score (i.e., “Ex-
tremely helpful”).

3.5.2 Student-authored Test Code. Wemeasured the test code qual-
ity with seven standard metrics:

1) Mutation coverage [2, 6, 9–11, 21]
The percentage of killed mutants with the total number of
mutants. We measured this effectiveness metric via PITest
with its default mutation operator.

(1) What challenge(s) did you encounter when creating or editing
the test cases?

(2) Please name one thing you would have liked to receive help
with during the study.

(3) Did you use the checklist during the study?
◦ Yes (jump to Q4) ◦ No (jump to Q7)

(4) (Used Checklist) How did you use the checklist? (Check ALL
that apply)
□ I read the checklist before I wrote any unit tests
□ I frequently consulted the checklist during unit testing
□ I consulted the checklist during unit testing, but not regularly
□ I used the checklist as a guide on what to test next
□ I used the checklist as a guide on when to stop unit testing
□ I walked through the checklist before I submitted the test code

(5) (Used Checklist) Which items in the checklist were most
useful? (Check ALL that apply)
... Same as the testing checklist in Table 3 ...

(6) (Used Checklist) How would you rate this checklist in terms
of helpfulness? (followed by Q8)
◦ Extremely helpful ◦ Very helpful
◦ Moderately helpful ◦ Slightly helpful
◦ Not at all helpful

(7) (Did not use Checklist) Please briefly explain why you chose
not to use the checklist. (followed by Q8)

(8) (For all) How many years of experience with unit testing do
you have?

(9) (For all) How do you describe your experience in unit testing?
◦ No experience ◦ Novice ◦ Advanced Beginner
◦ Competent ◦ Proficient ◦ Expert

Figure 2: Questions in the optional post-survey. The survey
was distributed via Qualtrics with a branching design.

ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia Gina R. Bai, Zuoxuan Jiang, Thomas W. Price, and Kathryn T. Stolee

Table 4: Sevenmeasurements of student-authored tests quality (sorted from themost to least significant for Benjamini-Hochberg
procedure) for comparing the quality of student-authored tests in Control Group (Fall 2023) vs. in Checklist Group (Spring
2024). For each measurement, the table presents its average (standard deviation), median, Mann–Whitney U test p-values
(unadjusted), and Rank-Biserial correlation coefficients.

Metrics Group Average (SD) Median p-value 𝑟𝑟𝑏

numTests Checklist 50.4 (33.6) 44.0 7.56e-09 *** 0.361Control 33.9 (28.4) 25.0

lineCov Checklist 95.1% (11.0%) 98.1% 1.985e-05 *** 0.260Control 92.0% (12.6%) 96.3%

mutationCov Checklist 90.1% (13.2%) 94.0% 3.375e-05 *** 0.258Control 85.9% (14.9%) 90.0%

numAssertions Checklist 77.6 (64.1) 63.0 0.0008 *** 0.211Control 62.4 (47.6) 47.0

branchCov Checklist 92.3% (13.3%) 97.5% 0.0030 ** 0.183Control 88.9% (15.2%) 92.5%

numAssertThrows Checklist 14.0 (18.3) 9.0 0.0097 ** 0.161Control 11.4 (15.6) 7.0

methodCov Checklist 98.0% (13.3%) 100.0% 0.1207 0.060Control 96.9% (15.2%) 100.0%
*𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001 (unadjusted); bold indicates significant after Benjamini-Hochberg procedure

2) Line coverage & 3) Branch coverage & 4) Method
coverage [1, 5, 9–11, 23, 36, 44]
We measured these two completeness metrics via IntelliJ
IDEA Code Coverage Runner.
5) The number of tests & 6) The number of assertions
& 7) The number of unhappy path tests that contains
assertThrows [8, 11]
We adopt this measurement of completeness from prior
work [11], and only consider the unhappy path tests that
assert an exception is thrown.

4 RESULTS
4.1 RQ1: Do students who receive the checklist

write better test code than those who do not?
Table 4 and Figure 3 show the seven quality metrics of the student-
authored test code (defined in Section 3.5.2), including effectiveness
metrics (i.e., mutationCov) and completeness metrics (e.g., lineCov,
branchCov, and numAssertThrows). For example, the table shows
that students in the Checklist Group wrote on average 50.4 test
cases (numTests) and 77.6 assertions (numAssertions), compared to
the Control Group’s average of 33.9 tests and 62.4 assertions.

Treating these seven metrics from Section 3.5.2 as dependent
variables, we measured the impact of the independent variable,
𝑖𝑠𝐶ℎ𝑒𝑐𝑘𝑙𝑖𝑠𝑡𝐺𝑟𝑜𝑢𝑝 (i.e. Control/Fall vs. Checklist/Spring groups).
Since the data were not normally distributed, we adopted non-
parametric Mann–Whitney U tests, and we report the p-values,
and the Rank-Biserial correlation coefficients (as a measure of ef-
fect size) in Table 4. The Rank-Biserial Correlation ranges from
-1 to 1, with 1 indicating the strongest positive relationship be-
tween the intervention and the outcome variable. We also applied
the Benjamini-Hochberg procedure to control the false discovery
rate (FDR) [15] at 0.05, and we highlight the 𝑝-values that remain
significant in bold.

The analysis of test code quality suggests that the testing check-
lists had a statistically significant impact on the effectiveness and
completeness of student-authored tests. The differences between
Control and Checklist Groups were significant for each measures
besides methodCov. As students were explicitly instructed to test
every single method, it is expected that the adoption of checklist
would not have a large impact on method coverage of student-
authored tests. Figure 3b shows the same trends visually, compar-
ing the distribution of students’ metrics in the Control (left) and
Checklist (right) Groups. Our findings differ somewhat from those
of the original study [9], which did not find much difference in
students’ coverage between the Checklist and Control Groups, and
which did not find significant differences in test effectiveness (i.e.,
mutationCov) between the groups (possibly due insufficient sample
size in the original study to detect this effect). One possible reason
that our results may contrast with the original study [9] is students’
engagement with the checklist itself. Most students in the Checklist
Group self-reported that they walked through the checklist before
submission (91/142, 69.47%), read the checklist before they wrote
any unit tests (83/142, 63.36%), and approximately half consulted
the checklist during unit testing (59/142, 45.04%). This is in contrast
to prior work [11], where only 50.7% of students adopted the test-
ing checklist as a form of tool support. Overall, students found the
checklist to be moderately helpful, rating it an average of 3.4 on a
5-point Likert scale. We discuss this contrast and potential reasons
for it further in Section 5.

Our results also show that the checklist may have impacted
students’ approach to testing as well, in ways that affect the style
of their tests more than their test quality. For example, we see
that students in the Checklist Group wrote more tests, and more
assertions, but actually had fewer assertions per test (77.6/50.4 =
1.54 for the Checklist Group vs 62.4/33.9 = 1.84 for the Control

Evaluating the Effectiveness of a Testing Checklist Intervention in CS2: AnQuasi-experimental Replication Study ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia

(a) mutationCov (b) lineCov (c) branchCov (d) methodCov

(e) numTests (f) numAssertions (g) numAssertThrows

Figure 3: Violin plots showing the distribution of the measurements of student-authored tests quality. Left: Control Group,
Right: Checklist Group.

Group). This may reflect the Checklist’s instruction to avoid having
“too many assert statements in a single test.”

4.2 RQ2: Does having the checklist intervention
early in the semester improve students’ later
testing performance?

To answer this question, we further analyzed the quality of students’
test code from Projects #1 - #3, in which the checklists were not
provided to students in both Fall 2023 and Spring 2024 semesters.
This allows us to measure any longer-term learning impact of the
checklist intervention. We treat this as an open question, as prior
work does not suggest whether to expect an effect of the checklist on
learning. One could imagine that as students adopted best practices
of testing in Project #0, they might learn these practices; however,
one could also imagine that the checklist serves only as a temporary
memory aid, and has little effect afterwards. Projects #1 - #3 asked
students to implement and unit test: 1) a Java class that represents
a user-defined object, 2) a Java class that represents a collection of
the user-defined objects. The underlying implementations of the
collection were 1) fix-sized arrays in Project #1, 2) dynamic arrays
in Project #2, and 3) linked lists in Project #3. While the class names
varied in these two semesters, the functionality of these two classes
remains the same. In both semesters, students were required to
submit both their source code, which accounted for 90% of project
grades, and their test code, which accounted for 10% of project
grades. Additionally, students were explicitly instructed to achieve

a minimum of 80% of line coverage in their source code to receive
the full credit on the test code.

Table 5 represents the quality of student-authored tests in Projects
#1 - #3 in Fall 2023 (Control) and Spring 2024 (Prior Checklist Expo-
sure). We report the same statistics, including unadjusted 𝑝-values
from comparative Mann-Whitney𝑈 tests, and bold those 𝑝-values
that remain significant after the Benjamini-Hochberg proecdure to
control the false discovery rate at 0.05 [15].

Overall, we see that the Control Group performs marginally bet-
ter on most measures of test coverage (lineCov, branchCov, method-
Cov) and effectiveness (mutationCov) across all three projects, with
one significant improvement on branchCov for Project #1. This
suggests that the checklist intervention on Project #0 did not have
a positive impact on students’ testing performance later in the se-
mester. It also serves as compelling evidence that the effects we did
see on Project #0 (RQ1) were likely due to the impact of the check-
list, rather than inherent differences between semesters and our
quasi-experimental design, because we only see these differences
when the checklist was present, and not later in the semester.

However, we do see some evidence that the Checklist had a
continuing impact on students’ testing behavior, if not their perfor-
mance. We observed that the students who received the checklist in
Project #0 (i.e., in Checklist Group) continued to write significantly
more tests (numTests 𝑝 < 0.001) on all three projects, and continued
to include more assertions (numAsserts 𝑝 < 0.01, numAssertThrows
𝑝 < 0.001) on Projects #1 and #2, compared to those in Control
Group. This indicates that students in Checklist Group continued

ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia Gina R. Bai, Zuoxuan Jiang, Thomas W. Price, and Kathryn T. Stolee

Table 5: The averages and Mann–Whitney U test p-values (unadjusted) of seven measurements for comparing the quality of
student-authored tests in Projects #1 - #3 in Control Group (Fall 2023) vs. in Checklist Group (Spring 2024).

Metrics Group Project #1 Project #2 Project #3
Average p-value Average p-value Average p-value

mutationCov Checklist 82.0% 0.2704 82.8% 0.1903 85.2% 0.0991Control 84.8% 84.5% 87.7%

lineCov Checklist 92.1% 0.5164 93.4% 0.8781 92.8% 0.0801Control 94.2% 94.1% 93.8%

branchCov Checklist 86.8% 0.0064 ** 88.7% 0.0499 * 86.8% 0.4091Control 90.4% 90.5% 88.9%

methodCov Checklist 95.4% 0.0595 96.6% 0.1409 94.9% 0.0453Control 97.2% 97.4% 95.6%

numTests Checklist 57.7 2.724e-08 *** 88.4 1.394e-15 *** 78.6 4.497e-15 ***Control 36.9 46.1 41.5

numAsserts Checklist 94.5 0.6290 162.8 0.0034 ** 146.3 0.0015 **Control 97.5 136.5 123.5

numAssertThrows Checklist 6.5 0.1422 9.0 7.753e-05 *** 6.8 5.914e-05 ***Control 5.7 6.4 4.9
*𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001 (unadjusted); bold indicates significant after Benjamini-Hochberg procedure

to produce more granular test results (<2 assertions per test), com-
pared to those generated by the Control Group (>2.5 assertions
per test). While we cannot definitely attribute this difference to the
checklist intervention, with the quasi-experimental nature of our
study, it seems likely, given that the magnitude of the differences
on Projects #1 - #3 (e.g. almost 2x as many tests written on average)
parallels the magnitude of differences on Project #0.

5 DISCUSSION
5.1 RQ1: Impact of the Checklist on

Performance
We found strong evidence that the checklist did improve students
coverage and test quality. The original study [9] presented evidence
that the checklist was similarly useful to a tutorial of a code cov-
erage tool (EclEmma), and presented some suggestive evidence
(not significant) that the checklist improved students’ mutation
coverage (which EclEmma did not help with). Our results offer
much stronger support for the checklist, and show that this ben-
efit is complementary to a code coverage tool, as students in both
groups had access to and instruction on using a code coverage tool.
These results agree somewhat more with Bai et al.’s later study of
a different, explicit strategy checklist intervention for testing [11],
which offered suggestive evidence that, early in the semester, such
a checklist may have improved test quality. Similarly, we found that
there is an effect early in the semester, but our results are also much
more conclusive. For educators, our study provides clear evidence
supporting the use of checklists when first introducing students to
testing. The checklist is a lightweight intervention, only requiring
the instructor to share the resource or embed it in an assignment,
making adoption straightforward.

These results are somewhat consistent with an understanding of
the checklist as a form of scaffolding that helps students to accom-
plish a task they otherwise may not have been able to do unassisted

[57]. We note that most students in the control group seemed capa-
ble of achieving relatively high line and mutation coverage without
assistance, with median 96.3% and 90.0%, respectively (see Table 4).
This suggests that writing a set of relatively effective tests was
already within students capabilities. However, with the checklist,
we see that students achieve many more perfect or near-perfect
coverage scores (see Figure 3c). One interpretation of this result is
that the checklist served as useful scaffolding specifcally for some
of the harder concepts of testing (e.g. testing edge cases), which
students otherwise would have struggled with. Future work could
investigate what specific testing concepts the checklist helped most
with.

5.2 RQ2: Impact of the Checklist on Learning
We saw no evidence that the impact of the checklist on students’
ability to write high-coverage and high-mutation-coverage tests
lasted beyond the original assignment. We therefore cannot con-
clude that the checklist lead to learning, or improved performance
without the checklist. This may have been because of the short ex-
posure to the checklist – a single project – and future work should
investigate whether a longer exposure may create a more enduring
effect. With additional exposure to the checklist, it is possible that
the steps of the checklist may be able to serve as generalizable
subgoals, similar to subgoal-labeled worked examples or coding
problems [39, 40]. However, we did not observe evidence of this
effect in this shorter study. For educators, our current evidence
lends support to the view of checklists as a tool to support memory
and recall [49, 50], rather than as as instructional material that en-
hances learning. However, we note that there is value in scaffolding
students to do well on their first assignment, e.g. in improving their
course grades, and potentially improving their confidence for future
assignments. Instructors could consider continuing to provide the
checklist in later assignments, as this requires minimal instructor
effort; however, our results do no speak directly to how effective
this would be.

Evaluating the Effectiveness of a Testing Checklist Intervention in CS2: AnQuasi-experimental Replication Study ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia

We do see some evidence that the checklist impacted the number
of tests and asserts that students wrote in later projects. One possi-
ble explanation is that the differences between the two populations
in later project may simply be due to incoming differences not
controlled for by our quasi-experimental design, though we see no
evidence of this in our pre-measures (Section 3.4). Another possible
explanation is that the checklist used in the first assignment had
a lasting impact on how students construct tests. The checklist
specifically encouraged students to create multiple tests for each
requirement, corresponding to valid inputs, boundary cases, in-
valid inputs and expected exceptions. It may be that students who
started off creating these finer-grained tests in the first assignment
continued to do so in later projects.

5.3 Threats to Validity
The grading rubrics differ among projects. Project #0 expects stu-
dents to achieve 100% coverage on both line coverage and branch
coverage for full credit, as this Project focuses solely on unit testing.
Projects #1 - #3 consist of both implementation and testing tasks,
and therefore only require students to achieve 80% line coverage
on every source code class (i.e., the implementation) for full credit
on the test code (10% of project grades). These thresholds were
applied to all submissions in both semesters, and might have led to
overestimation of students’ performance on completeness metrics.

The adoption of the checklists and the completion of the post-
surveys on the use of checklists were optional, are subject to selec-
tion bias, and consequently conclusions drawn may not generalize.
Additionally, response bias may be introduced in the student self-
reported surveys, and hence impact the validity of survey responses.

6 CONCLUSION & FUTUREWORK
To assist students in writing high-quality test code without intro-
ducing a steep learning curves, a previous study [9] designed a
lightweight testing checklist that contains both testing strategies
and tutorial information and confirmed its effectiveness in a lab set-
ting. To explore the potential benefits of the testing checklists in a
classroom setting, we conducted a operational replication with two
different semesters of students and compared students’ testing per-
formance on the same course assessment across the two semesters.
Our results echoed the findings in the previous work [9, 11] that
the testing checklist could assist students write significantly better
tests, in terms of effectiveness and completeness, compared to those
who with no tool support from the testing checklist.

Our replication experience provided additional evidence that the
testing checklist interventionmay be effective in various contexts. It
also demonstrated that the testing checklists are lightweight enough
to be adapted to other classrooms, instructors, and universities. In
this study, we did not observe a lasting impact on students’ ability
to write high-coverage and high-mutation-coverage tests, as the
testing checklist was only provided for the first assignment. Future
work could scaffold students with the checklists throughout the
first half of the semester and explore their testing practices and
performance towards the end of the semester.

The large-scale classroom setting of this study posed a challenge
for us in measuring students’ actual engagement with the checklist.
Some students, as instructed, checked off an item by placing an ‘X’

in front of it, some students checked off items by deleting them, and
some students self-reported that they used the checklist but deleted
the entire checklist before submission. It is unclear to us whether
and how students interact with the checklist during unit testing. It
is also unclear to us whether the students in the Checklist Group
consulted the checklist when completing Projects #1 - #3, and hence
the potential impact of testing checklists on students’ learning,
rather than solely focusing on testing performance when received
tool support, remains understudied. Future work in classrooms
could investigate students’ actual engagement with the checklist
as tool support, encourage students to write their own testing
checklists, and explore the potential impact of the checklist on
students’ perceptions towards testing.

ACKNOWLEDGMENTS
This work is supported by NSF IUSE #2141923.

REFERENCES
[1] [n. d.]. EclEmma: Coverage Counters. https://www.eclemma.org/jacoco/trunk/

doc/counters.html. Accessed: 2024-06-06.
[2] [n. d.]. PITest: Mutation Operators. http://pitest.org/quickstart/mutators/. Ac-

cessed: 2024-06-06.
[3] ACM, 2013. Computer Science Curricula Recommendations: Curriculum Guide-

lines for Undergraduate Degree Programs in Computer Science. https://www.
acm.org/education/curricula-recommendations.

[4] Alireza Ahadi, Arto Hellas, Petri Ihantola, Ari Korhonen, and Andrew Petersen.
2016. Replication in computing education research: researcher attitudes and
experiences. In Proceedings of the 16th Koli Calling International Conference on
Computing Education Research (Koli Calling 2016). ACM.

[5] Tiago L. Alves and Joost Visser. 2009. Static Estimation of Test Coverage. In
International Working Conference on Source Code Analysis and Manipulation. 55–
64.

[6] Michael Andersson. 2017. An Experimental Evaluation of PIT’s Mutation Opera-
tors. , 27 pages.

[7] Maurício Aniche, Felienne Hermans, and Arie van Deursen. 2019. Pragmatic
Software Testing Education. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). ACM, New
York, NY, USA, 414–420.

[8] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman. 2014. Test Code Quality
and Its Relation to Issue Handling Performance. IEEE Transactions on Software
Engineering 40, 11 (Nov 2014), 1100–1125.

[9] Gina R. Bai, Kai Presler-Marshall, Thomas Price, and Kathryn T. Stolee. 2022.
Check It Off: Exploring the Impact of a Checklist Intervention on the Quality of
Student-written Unit Tests. In 27th ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’22).

[10] Gina R. Bai, Justin Smith, and Kathryn T. Stolee. 2021. How Students Unit Test:
Perceptions, Practices, and Pitfalls. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1 (Virtual Event,
Germany) (ITiCSE ’21). ACM, New York, NY, USA, 248–254.

[11] Gina R. Bai, Sandeep Sthapit, Sarah Heckman, Thomas W. Price, and Kathryn T.
Stolee. 2023. An Experience Report on Introducing Explicit Strategies into Testing
Checklists for Advanced Beginners. In Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education V. 1 (, Turku, Finland,)
(ITiCSE 2023). ACM, New York, NY, USA, 194–200.

[12] Lex Bijlsma, Niels Doorn, Harrie Passier, Harold Pootjes, and Sylvia Stuurman.
2021. How do Students Test Software Units?. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering Education and Training
(ICSE-SEET). 189–198.

[13] Raquel Blanco, Manuel Trinidad, María José Suárez-Cabal, Alejandro Calderón,
Mercedes Ruiz, and Javier Tuya. 2023. Can gamification help in software testing
education? Findings from an empirical study. Journal of Systems and Software
200 (2023), 111647.

[14] Michael K. Bradshaw. 2015. Ante Up: A Framework to Strengthen Student-Based
Testing of Assignments. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (Kansas City, Missouri, USA) (SIGCSE ’15). ACM,
New York, NY, USA, 488–493.

[15] David I. Broadhurst and Douglas B. Kell. 2007. Statistical strategies for avoiding
false discoveries in metabolomics and related experiments. Metabolomics 2 (2007),
171–196. https://api.semanticscholar.org/CorpusID:7638542

[16] Neil C. C. Brown, Eva Marinus, and Aleata Hubbard Cheuoua. 2022. Launching
Registered Report Replications in Computer Science Education Research. In

https://www.eclemma.org/jacoco/trunk/doc/counters.html
https://www.eclemma.org/jacoco/trunk/doc/counters.html
http://pitest.org/quickstart/mutators/
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations
https://api.semanticscholar.org/CorpusID:7638542

ICER ’24 Vol. 1, August 13–15, 2024, Melbourne, VIC, Australia Gina R. Bai, Zuoxuan Jiang, Thomas W. Price, and Kathryn T. Stolee

Proceedings of the 2022 ACM Conference on International Computing Education
Research - Volume 1 (ICER 2022). ACM.

[17] Ingrid A. Buckley and Winston S. Buckley. 2017. Teaching Software Testing
using Data Structures. International Journal of Advanced Computer Science and
Applications 8, 4 (2017).

[18] Kevin Buffardi and Juan Aguirre-Ayala. 2021. Unit Test Smells and Accuracy of
Software Engineering Student Test Suites. ACM, New York, NY, USA, 234–240.

[19] Michael E Caspersen and Jens Bennedsen. 2007. Instructional design of a pro-
gramming course: a learning theoretic approach. In Proceedings of the third
international workshop on Computing education research. 111–122.

[20] Seth Chaiklin. 2003. The Zone of Proximal Development in Vygotsky’s Analysis
of Learning and Instruction. Vygotsky’s Educational Theory in Cultural Context
(09 2003).

[21] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: A Practical Mutation Testing Tool for Java (Demo).
In Proceedings of the 25th International Symposium on Software Testing and Analy-
sis (Saarbrücken, Germany) (ISSTA 2016). Association for Computing Machinery,
New York, NY, USA, 449–452.

[22] Albert T Corbett and John R Anderson. 1994. Knowledge tracing: Modeling the
acquisition of procedural knowledge. User modeling and user-adapted interaction
4 (1994), 253–278.

[23] Ermira Daka and Gordon Fraser. 2014. A Survey on Unit Testing Practices and
Problems. In 2014 IEEE International Symposium on Software Reliability Engineer-
ing (ISSRE ’14). 201–211.

[24] Simone C. dos Santos, Maria da Conceição Moraes Batista, Ana Paula C. Cav-
alcanti, Jones O. Albuquerque, and Silvio R.L. Meira. 2009. Applying PBL in
Software Engineering Education. In 2009 22nd Conference on Software Engineer-
ing Education and Training. 182–189.

[25] Stephen H. Edwards, Zalia Shams, Michael Cogswell, and Robert C. Senkbeil.
2012. Running Students’ Software Tests against Each Others’ Code: New Life
for an Old "Gimmick". In Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education (Raleigh, North Carolina, USA) (SIGCSE ’12). ACM,
New York, NY, USA, 221–226.

[26] Gordon Fraser, Alessio Gambi, Marvin Kreis, and José Miguel Rojas. 2019. Gamify-
ing a Software Testing Course with Code Defenders. In Proc. of the ACM Technical
Symposium on Computer Science Education (SIGCSE) (SIGCSE’19). ACM.

[27] Alessio Gaspar, Sarah Langevin, Naomi Boyer, and Ralph Tindell. 2013. A Prelim-
inary Review of Undergraduate Programming Students’ Perspectives on Writing
Tests, Working with Others, & Using Peer Testing. In ACM SIGITE Conference on
Information Technology Education. 109–114.

[28] Michael H. Goldwasser. 2002. A Gimmick to Integrate Software Testing Through-
out the Curriculum. In Technical Symposium on Computer Science Education
(SIGCSE ’02). 271–275.

[29] Giovanni Grano, Fabio Palomba, and Harald C. Gall. 2019. Lightweight Assess-
ment of Test-Case Effectiveness using Source-Code-Quality Indicators. IEEE
Transactions on Software Engineering (2019), 1–1.

[30] Omar S. Gómez, Natalia Juristo, and Sira Vegas. 2014. Understanding replication
of experiments in software engineering: A classification. Information and Software
Technology 56, 8 (2014), 1033–1048.

[31] Qiang Hao, David H. Smith IV, Naitra Iriumi, Michail Tsikerdekis, and Amy J.
Ko. 2019. A Systematic Investigation of Replications in Computing Education
Research. ACM Transactions on Computing Education 19, 4 (Aug. 2019), 1–18.

[32] Spencer E. Harpe. 2015. How to analyze Likert and other rating scale data.
Currents in Pharmacy Teaching and Learning 7, 6 (2015), 836–850.

[33] Sarah Heckman, Jessica Young Schmidt, and Jason King. 2020. Integrating Testing
Throughout the CS Curriculum. In Conference on Software Testing, Verification
and Validation Workshops (ICSTW). 441–444.

[34] Edward L. Jones. 2001. Integrating Testing into the Curriculum — Arsenic in
Small Doses. In Proceedings of the 32nd SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’01). ACM, New York, NY, USA, 337–341.

[35] Liesbeth Kester, Fred Paas, and Jeroen J. G. Van Merrienboer. 2010. Instructional
Control of Cognitive Load in the Design of Complex Learning Environments.
Cognitive Load Theory (04 2010).

[36] Ken Koster. 2008. A State Coverage Tool for JUnit. In Companion of the 30th
International Conference on Software Engineering (ICSE Companion ’08). 965–966.

[37] Otávio Augusto Lazzarini Lemos, Fábio Fagundes Silveira, Fabiano Cutigi Ferrari,
and Alessandro Garcia. 2018. The impact of Software Testing education on code
reliability: An empirical assessment. Journal of Systems and Software 137 (2018),
497–511.

[38] Lauren E Margulieux and Richard Catrambone. 2016. Improving problem solving
with subgoal labels in expository text and worked examples. Learning and
Instruction 42 (2016), 58–71.

[39] Lauren E Margulieux, Briana B Morrison, and Adrienne Decker. 2020. Reducing
withdrawal and failure rates in introductory programming with subgoal labeled
worked examples. International Journal of STEM Education 7 (2020), 1–16.

[40] Lauren E Margulieux, Briana B Morrison, Baker Franke, and Harivololona Ramil-
ison. 2020. Effect of Implementing Subgoals in Code. org’s Intro to Programming
Unit in Computer Science Principles. ACM Transactions on Computing Education
(TOCE) 20, 4 (2020), 1–24.

[41] Samiha Marwan, Bita Akram, Tiffany Barnes, and Thomas W Price. 2022. Adap-
tive immediate feedback for block-based programming: Design and evaluation.
IEEE Transactions on Learning Technologies 15, 3 (2022), 406–420.

[42] MonicaM.McGill. 2019. Discovering Empirically-Based Best Practices in Comput-
ing Education Through Replication, Reproducibility, and Meta-Analysis Studies.
In Proceedings of the 19th Koli Calling International Conference on Computing
Education Research (Koli Calling ’19). ACM.

[43] Briana B Morrison, Lauren E Margulieux, Barbara Ericson, and Mark Guzdial.
2016. Subgoals help students solve Parsons problems. In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education. 42–47.

[44] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. 2016. Automatic Test Case Generation: What if Test Code Quality
Matters?. In International Symposium on Software Testing and Analysis (ISSTA
2016). 130–141.

[45] Kai Petersen and Jefferson Seide Molléri. 2021. Preliminary Evaluation of a Survey
Checklist in the Context of Evidence-based Software Engineering Education. In
Proceedings of the 16th International Conference on Evaluation of Novel Approaches
to Software Engineering, ENASE 2021, Online Streaming, April 26-27, 2021, Raian
Ali, Hermann Kaindl, and Leszek A. Maciaszek (Eds.). SCITEPRESS, 437–444.

[46] Raphael Pham, Stephan Kiesling, Olga Liskin, Leif Singer, and Kurt Schneider.
2014. Enablers, Inhibitors, and Perceptions of Testing in Novice Software Teams.
In ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). 30–40.

[47] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding
Myths and Realities of Test-suite Evolution. In Foundations of Software Engineering
(FSE ’12). ACM, Article 33, 11 pages.

[48] Upsorn Praphamontripong, Mark Floryan, and Ryan Ritzo. 2020. A Preliminary
Report on Hands-On and Cross-Course Activities in a College Software Testing
Course. In Conference on Software Testing, Verification and Validation Workshops
(ICSTW). 445–451.

[49] Guoping Rong, Jingyi Li, Mingjuan Xie, and Tao Zheng. 2012. The Effect of
Checklist in Code Review for Inexperienced Students: An Empirical Study. In
2012 IEEE 25th Conference on Software Engineering Education and Training. 120–
124.

[50] Guoping Rong, Jingyi Li, Mingjuan Xie, and Tao Zheng. 2012. The effect of
checklist in code review for inexperienced students: An empirical study. In 2012
IEEE 25th Conference on Software Engineering Education and Training. IEEE, 120–
124.

[51] Lilian Passos Scatalon, Jeffrey C. Carver, Rogério Eduardo Garcia, and
Ellen Francine Barbosa. 2019. Software Testing in Introductory Programming
Courses: A Systematic Mapping Study. InACM Technical Symposium on Computer
Science Education (SIGCSE ’19). 421–427.

[52] Lilian Passos Scatalon, Jorge Marques Prates, Draylson Micael de Souza,
Ellen Francine Barbosa, and Rogério Eduardo Garcia. 2017. Towards the Role
of Test Design in Programming Assignments. In 2017 IEEE 30th Conference on
Software Engineering Education and Training (CSEE&T). 170–179.

[53] Matthew Sibbald, Anique BH De Bruin, and Jeroen JG van Merrienboer. 2014.
Finding and fixing mistakes: do checklists work for clinicians with different levels
of experience? Advances in Health Sciences Education 19 (2014), 43–51.

[54] Matthew Sibbald, Anique B H de Bruin, and Jeroen J G van Merrienboer. 2013.
Checklists improve experts’ diagnostic decisions. Medical Education 47, 3 (2013),
301–308.

[55] Jaime Spacco and William Pugh. 2006. Helping Students Appreciate Test-driven
Development (TDD). In Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications (Portland,
Oregon, USA) (OOPSLA ’06). ACM, New York, NY, USA, 907–913.

[56] John Sweller. 2011. CHAPTER TWO - Cognitive Load Theory. Psychology of
Learning and Motivation, Vol. 55. Academic Press, 37–76.

[57] Janneke van de Pol, Monique Volman, and Jos Beishuizen. 2010. Scaffolding
in Teacher–Student Interaction: A Decade of Research. Educational Psychology
Review 22 (09 2010), 271–296.

[58] Michael Wick, Daniel Stevenson, and Paul Wagner. 2005. Using Testing and JUnit
across the Curriculum. In Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education (St. Louis, Missouri, USA) (SIGCSE ’05). ACM, New
York, NY, USA, 236–240.

[59] David Wood, Jerome S Bruner, and Gail Ross. 1976. The role of tutoring in
problem solving. Journal of child psychology and psychiatry 17, 2 (1976), 89–100.

[60] Rui Zhi, Thomas W Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes,
and Min Chi. 2019. Exploring the impact of worked examples in a novice pro-
gramming environment. In Proceedings of the 50th acm technical symposium on
computer science education. 98–104.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Educational Interventions in Testing
	2.2 Checklists in Education
	2.3 Replication Studies in CS Education

	3 Method: Operational Replication in Data Structures (CS2) Course
	3.1 Overview of the CS2 Course
	3.2 Participants
	3.3 Task: Project #0 on Unit Testing
	3.4 Comparability of Experimental Groups
	3.5 Data Analysis

	4 Results
	4.1 RQ1: Do students who receive the checklist write better test code than those who do not?
	4.2 RQ2: Does having the checklist intervention early in the semester improve students' later testing performance?

	5 Discussion
	5.1 RQ1: Impact of the Checklist on Performance
	5.2 RQ2: Impact of the Checklist on Learning
	5.3 Threats to Validity

	6 Conclusion & Future Work
	Acknowledgments
	References

