
A Comparative Study on ChatGPT and Checklist as Support Tools
for Unit Testing Education

Zihan Fang
zihan.fang@vanderbilt.edu

Vanderbilt University
USA

Jiliang Li
ericlij@stanford.edu
Stanford University

USA

Anda Liang
anda.liang@vanderbilt.edu

Vanderbilt University
USA

Gina R. Bai
rui.bai@vanderbilt.edu
Vanderbilt University

USA

Yu Huang
yu.huang@vanderbilt.edu
Vanderbilt University

USA

ABSTRACT
Testing is widely practiced in software engineering, and many tools
have been developed to support students in learning testing. Prior
research suggests that a lightweight testing checklist improves
learning outcomes but doesn’t address students’ challenges in writ-
ing test code that matches their intentions or design. Meanwhile,
generative AI tools (e.g., ChatGPT) bring new promise as another
form of software assistance tool. In this study, we examined the im-
pact of various support tools (checklist, ChatGPT, or both) on unit
testing among 42 students. Our results indicated that using these
tools individually or in combination produced a comparable effect
on student performance in unit testing. Students preferred using the
checklist but acknowledged ChatGPT’s effectiveness in accelerating
task completion and addressing programming language challenges.
While ChatGPT demonstrated potential benefits for testing educa-
tion, it did not overcome the implementation challenges identified
in the previous study. Moreover, reliance on ChatGPT may hinder
students’ deeper engagement with new concepts, which is crucial
for comprehensive learning, as they often interact superficially
with AI-generated responses without employing the critical think-
ing necessary to evaluate the information provided. Therefore, we
proposed recommendations for both students and instructors on
adapting to learning and teaching in the AI era and offer insights
into the evolving role of AI in education.

CCS CONCEPTS
• Applied computing → Education; • Software and its engi-
neering → Software verification and validation.

KEYWORDS
ChatGPT, Checklist, Unit Testing, Testing Education

ACM Reference Format:
Zihan Fang, Jiliang Li, Anda Liang, Gina R. Bai, and Yu Huang. 2025. A
Comparative Study on ChatGPT and Checklist as Support Tools for Unit
Testing Education. In 33rd ACM International Conference on the Foundations
of Software Engineering (FSE Companion ’25), June 23–28, 2025, Trondheim,

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution 4.0 International License.
FSE Companion ’25, June 23–28, 2025, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1276-0/2025/06
https://doi.org/10.1145/3696630.3727244

Norway. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3696
630.3727244

1 INTRODUCTION
Testing is a common practice in software engineering [25, 40]. Con-
sequently, software testing education has garnered significant atten-
tion [3, 23, 45], leading to an increasing trend of incorporating test-
ing education into standard computer science curricula [5, 12, 26].
When students learn about software testing, their performance can
be improved with the help of various external testing support tools,
such as coverage [15, 19, 48] and inquiry-based conceptual infor-
mation [16]. A recent study by Bai et al. proposes a lightweight
support tool for testing education, a testing checklist, that points at
exactly what each test case and suite should aim to achieve [5]. The
checklist has significant positive impacts on student performance
in software testing [4], demonstrates comparable effectiveness to
other advanced tools (e.g., EclEmma), and can be easily used by
students without a steep learning curve [5]. Yet, although exist-
ing testing tools are often effective in suggesting what and where
to test, researchers have observed that students may struggle to
implement correct test code that accurately reflects their testing
intentions or designs [6].

On this front, ChatGPT, powered by generative AI, has gained
widespread recognition for its ability to generate code from nat-
ural language descriptions, offering new potential as a software
assistance tool [14, 17, 29]. It provides numerous benefits, includ-
ing improved coding efficiency, automated code generation, and
enhanced code comprehension assistance [8, 36]. However, there
is an ongoing debate about ChatGPT’s reliability (e.g., generating
correct, compilable code) and its potential to encourage superfi-
cial engagement [1, 7, 29]. Furthermore, in an educational context,
ChatGPT often decreases the desire of students to explore tradi-
tional learning support resources by offering more easily accessible
assistance [53].

Given these concerns, it is still unclear whether generative AI
tools (e.g., ChatGPT) can enhance students’ performance in soft-
ware testing compared to traditional support tools (e.g., checklists)
and resolve challenges that traditional tools cannot, such as imple-
mentation barriers. Therefore, a comprehensive evaluation of the
impact of these support tools on educational outcomes in testing
contexts is crucial for providing valuable insights to educators and

https://orcid.org/0009-0009-2151-2922
https://orcid.org/0009-0004-2852-0865
https://orcid.org/0009-0007-4429-2884
https://orcid.org/0009-0004-6922-7470
https://orcid.org/0000-0003-2730-5077
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696630.3727244
https://doi.org/10.1145/3696630.3727244
https://doi.org/10.1145/3696630.3727244


FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Zihan Fang, Jiliang Li, Anda Liang, Gina R. Bai, and Yu Huang

students and for advancing AI tools in software engineering edu-
cation. To this end, we conducted a comparative study evaluating
the impact of using a checklist [5], ChatGPT, or a combination
of both on 42 students within the context of unit testing educa-
tion. Our goal is to determine whether the checklist and ChatGPT
produce comparable effects on students’ unit testing performance.
Furthermore, we aim to examine whether ChatGPT provides fur-
ther benefits when used alongside the checklist, such as reducing
barriers to implementing test cases that the checklist alone may
not address. We claim the following contributions:

• A comprehensive investigation on the impact of using the
checklist, ChatGPT, or both on students in unit testing.

• Present empirical evidence on effective tools for software
testing education.

• Insights into developing better teaching practices and strate-
gies for software testing.

Our results showed no statistically significant differences in
task performance among students using the checklist, ChatGPT,
or both tools combined. However, ChatGPT’s effectiveness heavily
depended on the quality of the prompts students provided. While
students found ChatGPT useful for completing tasks more quickly
and overcoming programming language challenges – evidenced
by screen recordings of their interactions – it did not address the
implementation challenges identified in prior research [6]. Further-
more, ChatGPT may even hinder deeper student engagement dur-
ing implementation testing. Based on these findings, we proposed
recommendations for both students and instructors on adapting to
learning and teaching in the AI era and provided insights into the
evolution of education-focused AI. All study materials are available
online1.

2 RELATEDWORK
2.1 Software Testing Education
The critical role of testing in software development has heightened
attention on testing education, essential for enhancing overall com-
puter science training as students who write their test cases tend to
produce higher-quality code [3, 9, 23, 34, 45]. As research on testing
education progresses, studies have demonstrated the effectiveness
of various pedagogical techniques in enhancing students’ learning
outcomes in software testing [24, 41]. Examples include peer test-
ing [24] and cross-course activities [41]. Among these techniques,
one prominent approach is providing support tools that provide
information such as missing test cases and coverage [19, 48]. How-
ever, such tools tend to deliver ground-truth information devoid of
insights into the fundamental testing concepts that render a test
suite inadequate, and thus discourage critical thinking and encour-
age reliance on automated feedback [11, 16]. Moreover, studies have
shown that senior-level CS students often struggle to effectively
use coverage-based testing tools, despite these being recognized as
state-of-the-art practices [5, 12]. In response, Cordova et al. [16]
propose inquiry-based conceptual feedback given students’ testing
results. Recently, Bai et al. focus on the testing process and fur-
ther devise a checklist pointing out what each test case and suite
should achieve based on fundamental testing concepts and JUnit

1https://anonymous.4open.science/r/TestingEdu-C5E5/

tutorials [5]. The checklist, easily transferable across university
classrooms, has shown comparable learning outcomes to cover-
age tools in experiments [5]. However, previous research has also
shown that the checklist does not assist students with implementa-
tion issues, and students often fail to implement correct test code
that aligns with their test intentions or designs [6]. Therefore, there
remains a need to find solutions to address implementation barriers
in testing.

2.2 Test Quality Measurements
Test code quality is often assessed through metrics such as state-
ment coverage and branch coverage, both measuring complete-
ness [3, 20, 26]. However, such metrics have significant drawbacks
as previous research indicates code coverage does not correlate
with the effectiveness of test suites [28]. Additionally, it is possible
to manipulate these metrics by writing inadequate tests that simply
execute code without implementing effective assertions [26]. As
a result, effectiveness metrics like mutation coverage have been
adopted [20, 25, 46, 51], as well as measuring a test suite’s ability
to detect intentionally seeded defects [5, 6]. Besides these metrics,
requirement coverage is used to assess how well the software meets
its specified requirements [5, 6]. Maintainability is frequently eval-
uated by detecting test smells [6, 10], as their presence can cause
inaccurate test outcomes during program evolution and hinder the
maintainability of unit tests [49]. A widely adopted tool for assess-
ing maintainability is SonarQube [18, 31, 37, 39], an open-source
static code analysis platform that identifies code smells to detect
maintainability issues in software systems. In this study, we em-
ployed all metrics above to assess the quality of students’ written
tests thoroughly.

2.3 ChatGPT in CS Education
As a leading example of state-of-the-art generative AI, ChatGPT’s
impact on CS education has been extensively explored [30, 32,
47]. For example, Quereshi [42] demonstrates that students using
ChatGPT achieve higher scores in a programming challenge, and
Lyu et al. [35] further show that semester-long exposure to ChatGPT
can improve student scores. Kosar et al. [32] conclude that it is safe
for novice programmers to use ChatGPT, as its use did not have
a significant impact on their learning and engagement. However,
concerns regarding the use of ChatGPT in CS education also exist.
Jalil et al. [29] found that ChatGPT could answer testing-related
questions with only 53.0% partial accuracy. Another concern is
about over-reliance on AI tools in software development education
and the importance of educating students on ethical and critical AI
use [38]. Additionally, Xue et al. [53] report that the availability of
ChatGPT could drastically reduce students’ use of other available
resources. Prior research emphasizes the importance of guiding
using generative AI and integrating it into courses, rather than
allowing unsupervised use by students, which can negatively affect
their learning [17]. The ambivalent role of ChatGPT in CS education
motivates this study to explore its potential as an alternative or
complementary testing support tool alongside the checklist [5],
which serves as a benchmark for assessing ChatGPT’s impact on
testing education.



A Comparative Study on ChatGPT and Checklist as Support Tools for Unit Testing Education FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

3 STUDY DESIGN
We investigate how students use different tools (i.e., the checklist,
ChatGPT, or a combination of both) to design and implement unit
tests, and evaluate the effects of these tools on their performance,
focusing on the following research questions:

• RQ1: How do students interact with different tools for unit
testing tasks?

• RQ2: How does the use of different tools impact students’
objective performance in unit testing?

• RQ3: What are students’ subjective experiences with differ-
ent tools for unit testing?

3.1 Student Participants
We recruited 42 students from a senior-level software engineer-
ing course at institutions redacted for review, all majoring in com-
puter science. On average, student participants had 2.8 years of
programming experience and 1.3 years of experience with Java. All
participants were new to unit testing, with the majority (71.1%)
self-identifying as novices or less skilled, while the remaining 28.9%
classified themselves as advanced beginners. The average experi-
ence of the students in ChatGPT was 0.8 years. Initially, students
were randomly assigned into three equally sized groups of 14 partic-
ipants each. Students in Group 1 (G1) were required to use only the
checklist, Group 2 (G2) used only ChatGPT, and Group 3 (G3) were
required to use both the checklist and ChatGPT. However, three
students did not follow the pre-assigned group requirements as
evidenced in their screen recordings (e.g., students in G3 used only
one tool instead of both), necessitating a redistribution of student
participants across groups to maintain accurate analysis, as further
discussed in Section 3.5. This experiment was conducted as part
of the student’s homework, contributing up to 10% of their final
grade based on performance. To further motivate students to do
their best, we awarded an additional one point toward their final
course grade (out of 100) to those who ranked in the top 10% of
their group.

Table 1: Demographic information of students in the final
group assignment, along with their self-reported experience
with Java, unit testing, and ChatGPT.

Groups
Education Experience (yrs)

Undergrad Grad Java JUnit ChatGPT

Checklist (G1) 13 3 1.1 0.8 0.9
ChatGPT (G2) 13 2 1.3 1.0 0.8
Checklist & ChatGPT (G3) 9 2 1.7 0.9 0.8

Overall 35 7 1.3 0.9 0.8

3.2 Checklist for Unit Testing
We employed a lightweight testing support tool, the checklist, de-
signed on the premise that while students understand software
testing principles, they require guidance on specifics such as excep-
tion testing syntax [6]. The checklist addresses common difficulties
students encounter during software testing, such as tests having
syntax errors or lacking assertions [3, 6], tests containing smells [3],

premature termination of testing [21], test suites insufficiently cov-
ering boundary values and other program requirements [3, 21],
and misinterpreting failing tests or modifying tests to remove the
appearance of a failure [41]. Consequently, the checklist is designed
to mitigate these challenges and is divided into two main sections:
one for individual test cases (Test Case Checklist) and the other
for the entire test suite (Test Suite Checklist). Each section con-
tains two lists: one specifying essential actions that the test case
or suite must perform, and another suggesting best practices to
enhance testing effectiveness. The checklist is not designed to teach
testing methodologies; rather, it serves as a prompt for students to
incorporate various testing strategies. Following is the checklist
that student participants referred to during testing:

Test Case Checklist

Each test case should:

□ Be executable (i.e., it has an@Test annotation and can be run
via “Run as JUnit Test”)

□ Have at least one assert statement or assert an exception is
thrown. Example assert statements include: assertTrue, assert-
False, and assertEquals (click for tutorials). For asserting an
exception is thrown, use assertThrows in JUnit 5 (click for tu-
torials).

□ Evaluate/test only one method

Each test case could:

□ Be descriptively named and commented
□ If there is redundant setup code in multiple test cases, extract it

into a common method (e.g., using @BeforeEach)
□ If there are too many assert statements in a single test case (e.g.,

more than 5), you might split it up so each test evaluates one
behavior.

Test Suite Checklist

The test suite should:

□ Have at least one test for each requirement
□ Appropriately use the setup and teardown code (e.g., @Be-

foreEach, which runs before each @Test)
□ Contains a fault-revealing test for each bug in the code (i.e., a

test that fails)
□ For each requirement, contain test cases for:

□ Valid inputs
□ Boundary cases
□ Invalid inputs
□ Expected exceptions

To improve the test suite, you could:

□ Measure code coverage using an appropriate tool, such as
EclEmma (installation, tutorial). Inspect uncovered code and
write tests as appropriate.

3.3 Tasks
The study consists of three primary tasks: two testing tasks adapted
from a prior testing-related study [6], and a post-task survey. The
first testing task requires students to design test suites in comments
based on specified requirements, while the second task involves

https://www.baeldung.com/junit-assertions
https://www.baeldung.com/junit-assert-exception
https://www.baeldung.com/junit-assert-exception
https://www.eclemma.org/installation.html
https://www.eclipse.org/community/eclipse_newsletter/2015/august/article1.php


FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Zihan Fang, Jiliang Li, Anda Liang, Gina R. Bai, and Yu Huang

implementing unit tests in Java. Both tasks offer sample cases in ei-
ther natural language or JUnit format, emphasizing strict adherence
to the provided specifications.

3.3.1 Test Design task - Mars Rover API. The goal of this task is
to test an API that tracks a rover’s movements on a simulated
100 x 100 grid and logs obstacles. Students will use a provided
behavior specification to create basic test cases, each including a
test name, scenario description, input specifications, and expected
outcomes—all in comments. This non-coding task is designed for
students with limited Java or JUnit experience and should be com-
pleted in about 20 minutes.

3.3.2 Test Implementation task - Bowling Score Keeper. The goal
of this task is to evaluate an application designed to compute the
score of a single bowling game. Students are provided with 1) a
comprehensive description detailing the expected behaviors, and
2) a fully developed program containing three classes (totaling
86 lines of code) and three total seeded faults. However, students
are not required to correct any defects or modify the source code.
Instead, they are tasked with developing JUnit tests to assess the
application’s performance based on the provided specifications.
The suggested completion time of this task is approximately 60
minutes.

3.3.3 Post-task Survey. The post-task survey includes multiple-
choice, Likert-scale, and open-ended questions. It is structured to
collect information on students’ demographics (12-7), program-
ming proficiency (8-11), familiarity with JUnit and ChatGPT (12-
15), and their perspectives on the effectiveness of various tools for
unit testing (16-32). It also includes a question to verify tool usage
(18), which serves as a cross-check to ensure that students in each
group adhered to the tool usage requirements. In total, the survey
comprises 32 questions, with certain questions tailored to specific
student groups as necessary. The survey is administered through
Google Forms and can be completed in approximately 5 minutes.

3.4 Protocol
The study was carried out as one of the assignments for a senior-
level software engineering course. However, students had the op-
tion to include or exclude their assignment data from the study
without any effect on their final grade. The IRB review is exempt
because our local IRB has classified this study as a course quality
improvement initiative. Before the assignment, instructors deliv-
ered two lectures on JUnit 5, as students were required to use it for
all unit testing tasks. As mentioned in Section 3.1, students were
randomly assigned to three groups. Thus, assignment instructions
were placed in three separate GitHub repositories to distribute the
materials, each corresponding to one of the groups. The teaching
staff distributed assignment links via email, ensuring that the group
assignment process and group members remained anonymous for
each student participant. Each email contained a GitHub link to
the assignment tasks and reiterated the tool requirements for the
group. Specifically, G1 has been instructed in both email and task
descriptions on GitHub to exclusively use the checklist, with a clear

21 refers to the first question of the post-task survey provided in the supplementary
material, with this numbering format consistently applied to all subsequent questions.
For example, 1–32 indicates the complete set of 32 survey questions.

emphasis on avoiding any generative AI tools. G2, on the other
hand, had the checklist removed from their task descriptions on
GitHub and was explicitly directed to use only ChatGPT. G3 was
instructed to use both ChatGPT and the checklist, with these in-
structions provided through both email and the GitHub repository.
Apart from these differences, all other aspects of the experimen-
tal setup were identical across groups. To minimize unnecessary
burdens and ensure equitable access, we did not mandate a spe-
cific ChatGPT version for students. However, we documented the
version each student used during data annotation. Students were
given a two-week window to complete the assignment at their
convenience. While suggested completion time was provided for
each task (as mentioned in Section 3.3), students had the flexibility
to finish within or beyond the suggested time. Additionally, stu-
dents were required to record their computer screens throughout
the assignment and complete a post-survey upon completion. The
experimental setup and protocol are summarized in Fig. 1, and all
materials used in the study are available online.

3.5 Group Reassignment
As mentioned in Section 3.1, initially, we randomly and evenly as-
signed students to three groups and then confirmed that their prior
experience with Java, JUnit, and ChatGPT was not significantly
different between the groups. However, since three students did
not strictly follow the instructions (e.g., students in G3 did not refer
to the checklist or ChatGPT), we adjusted the group distribution
slightly based on their observed tool usage in the screen recordings.
After the reassignment, G1 consisted of 16 students, G2 had 15 stu-
dents, and G3 included 11 students. To further validate the accuracy
of the group reassignment—particularly due to the absence of valid
screening recordings from five student participants, as noted in
Section 3.6.1—we analyzed students’ responses to a post-survey
question about the tools they used during the testing tasks. This
analysis confirmed that the reassignment accurately reflected their
actual behavior. Additionally, to ensure comparability among the
three groups after reassignment, we analyzed their midterm scores,
Java experience, ChatGPT experience, and unit testing experience,
finding no statistically significant differences between groups. Ta-
ble 1 summarizes the demographic information of eligible student
participants in the final group assignment.

3.6 Data Analysis
3.6.1 Screen recordings. We collected approximately 55.5 hours of
screen recordings from 37 participants, as five of the 42 participants
either failed to submit their recordings or provided invalid sub-
missions due to technical issues. The recordings were distributed
across three groups, with 15 participants in G1, 13 in G2, and 9 in
G3. The duration of individual recordings varied, ranging from 28 to
142 minutes. Three authors manually annotated the screen record-
ings to thoroughly log each participant’s actions during the testing
tasks, including actions such as refer to the checklist, use ChatGPT-
4.0, review source code, and develop test cases. To ensure accuracy,
each annotated action was precisely timestamped and thoroughly
described, adhering to best practices in qualitative analysis [43]. As
noted in 3.4, the task instructions did not specify which version

https://anonymous.4open.science/r/TestingEdu-C5E5/


A Comparative Study on ChatGPT and Checklist as Support Tools for Unit Testing Education FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

Figure 1: Group assignments, experiment protocols, and analysis procedures illustration

of ChatGPT students should use. However, the screen recordings
confirmed that all valid student submissions used ChatGPT-4.0.

Initially, one researcher drafted a preliminary codebook based
on three recordings from three groups. The manual annotation
process involved a comprehensive consensus-building approach to
ensure reliability [27]. Both agreement and disagreement cases were
systematically recorded: instances of disagreement often stemmed
from overlapping or ambiguous code definitions andwere addressed
through iterative discussions, revisiting the original screen record-
ing, and iterative revisions involving all authors, culminating in
a final codebook. To ensure the reliability of the final codebook,
the first author conducted validation using recordings from three
additional participants, confirming its stability and applicability.
The codebook is publicly accessible online.

3.6.2 Unit Testing Tasks. Inspired by previous studies [5, 6], we
evaluated students performance from four main aspects:
Completeness:Measured using Requirements Coverage, Instruction
Coverage and Branch Coverage. We manually calculated the require-
ment coverage to ensure that all functional and non-functional
specifications were covered, regardless of whether they were imple-
mented correctly. Additionally, we employed EclEmma3 to calculate
instruction and branch coverage to assess how thoroughly the dif-
ferent logical paths of the application were tested.
Effectiveness:Measured using Mutation Coverage and Identified
Bug.Mutation Coverage quantifies the percentage of simulated faults
(mutants) detected by the test suite [2] and was calculated using
PITest4. Moreover, as stated in Section 3.3.2, we introduced three
seeded bugs into the source code [6] in the second testing task
to simulate real-world debugging scenarios. We then manually
verified the number of tests written by students that successfully
exposed these seeded bugs [6].
Maintainability: Assessed through Maintainability Issues and
Test Name Quality. Maintainability Issues, identified using Sonar-
Qube5—a popular open-source static analysis tool—are measured
by the number of code smells detected based on violations of rules
defined in SonarQube’s default Quality Profile. Complementing

3https://www.eclemma.org/
4https://pitest.org/
5https://www.sonarsource.com/products/sonarqube/

this, Test Name Quality measures the clarity, descriptiveness, and
meaningfulness of the test names, which were manually rated by
one author on a scale from 1 (low quality) to 5 (high quality). These
ratings were subsequently verified by another author to ensure
their accuracy and validity.
Implementations Barrier: Measured using Normalized Erroneous
Implementations, indicating the proportion of test cases that stray
from the student’s original intent by failing to meet either program-
ming standards or logic. This metric is calculated by dividing the
number of Erroneous Test Cases by the Total Test Count per student.
The Total Test Count includes all test cases written by a student,
regardless of correctness. An Erroneous Test Cases is defined by
meeting any of the following criteria: (1) the test case fails to com-
pile; (2) the test case does not match its specified description in
the header comments; (3) the test case exhibits flawed logic, such
as using incorrect bowling rules as the oracle or applying both
assertTrue and assertFalse on the same Boolean condition; (4)
the test throws errors due to inadequate exception handling.

3.6.3 Statistical Analysis. A total of forty-two valid testing script
submissions were collected for both the test design and test im-
plementation tasks. Two-way ANOVA was performed to analyze
the metrics outlined in Section 3.6.2 for evaluating testing results,
aiming to assess the impact of different support tools on students’
testing performance [50]. Additionally, post-task survey data from
forty-two valid responses across three groups were analyzed. The
Mann-Whitney U Test was used to examine differences between two
groups with non-normally distributed data [33], while theWilcoxon
Signed-Rank Test was applied for within-group comparisons across
different tool usages to account for non-normality [44].

4 RESULTS
We discuss how students use the checklist and/or ChatGPT for unit
testing, along with their test performance and subjective experi-
ences with these tools.

https://anonymous.4open.science/r/TestingEdu-C5E5/


FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Zihan Fang, Jiliang Li, Anda Liang, Gina R. Bai, and Yu Huang

4.1 RQ1: How do students interact with
different tools for unit testing?

Conclusion Analysis of students’ interactions with the tools
revealed that ChatGPT could provide comprehensive support
for unit testing tasks, enabling students to rely less on traditional
resources (e.g., task descriptions and tutorials) and complete
test cases more efficiently than when using only the checklist.
However, the benefits of using ChatGPT for unit testing largely
depend on students’ ability to engage with the tool effectively,
particularly in crafting high-quality prompts.

Table 2: Average time (in minutes) spent on each action by
students in three groups. * indicates the significant difference
confirmed by ANOVA.

Actions
Average Time in Minutes

Checklist (G1) ChatGPT (G2) Checklist & ChatGPT (G3)

Test Design task - Mars Rover API (Task 1)

1) ChatGPT - 7.4 5.6

2) Checklist 1.1 - 1.3

3) Google 0.9 0 1.5

4) Other Resources 3.5 5.4 1.2

5) Total Working Time 16.8 12.1 18.8

6) Time Per Test 3.1 2.7 3.1

Test Implementation task - Bowling Score Keeper (Task 2)

1) ChatGPT - 16.5 10.7

2) Checklist 1.2 - 1.4

3) Google 2.3 6.3 0.9

4) Other Resources * 13.8 5.8 2.3

5) Total Working Time 38.7 35.6 30.1

6) Time Per Test 4.3 4.2 3.3

In general, ChatGPT can offer students more comprehensive sup-
port during testing tasks than the checklist. Students with access to
ChatGPT were less likely to rely on traditional resources, such as
task descriptions and tutorials, for both designing and implement-
ing testing tasks. Specifically, 93.8% of G1 students have referred to
traditional resources, in contrast to 73.3% and 72.7% for G2 and G3,
respectively. Additionally, G1 students (50.0%) were more likely to
use Google when compared to G2 and G3 students (20.0% and 27.3%
respectively) in both tasks. While the observed difference (𝑝 = 0.31,
𝜂2 = 0.19) was not statistically significant, it suggested a potential
trend where support from ChatGPT may reduce students’ reliance
on Google and other external resources for testing tasks.

This finding is further illustrated by the average time spent
on each action during testing, as summarized in Table 2. For the
test design task, the time spent on actions across all groups is
comparable. However, for the test implementation task, students in
G2 and G3, who were allowed to use ChatGPT, spent significantly
less time using other external resources compared to students in
G1 (𝑝 = 0.0003, 𝜂2 = 0.41), with average times of 13.8 minutes
for G1, 5.8 minutes for G2, and 2.3 minutes for G3. Moreover, we
found that students in groups G2 and G3 who used ChatGPT often
accelerated their test implementation by copying and pasting the

generated test cases. Notably, 77.3% of these students either failed
to run the tests generated by ChatGPT or accepted the results
without reviewing or verifying the underlying logic. In contrast, G1
students, who were restricted to using only the checklist, generally
spent more time writing and revising unit test cases compared to
G2 and G3, with average durations of 38.7, 35.6, and 30.1 minutes,
though the differences were not statistically significant (𝑝 = 0.44,
𝜂2 = 0.04). Additionally, no significant differences were found
among the groups in the time spent on other actions, such as using
ChatGPT or using the checklist. However, with the support of
ChatGPT, students generally completed the task more quickly, as
shown in Table 2.

Although the reduced time with ChatGPT suggested increased
efficiency, the reliability of this method remained inconsistent. Our
analysis of ChatGPT prompts revealed that students who generated
effective test cases with ChatGPT were inclined to provide com-
plete task descriptions and all relevant source codes. This approach
aligns more closely with the traditional software testing method
of designing test cases first and then implementing them. How-
ever, students who provided incomplete information in the prompt
faced challenges in obtaining useful responses from ChatGPT. For
example, one student’s prompt to ChatGPT was:
"Given this program: [Frame.java]6 how can I test it?"

In response, ChatGPT primarily generated test cases that invoked
the Frame constructor, leading the student to struggle until addi-
tional source files were incorporated into the prompts. Moreover,
another representative, yet ineffective prompt was:
"Did you cover all possible cases?"

Students often used this prompt toward the end of their interaction
with ChatGPT, which typically responded with numerous redun-
dant test cases that did not increase code coverage. Therefore, the
extent of the benefits students can derive from ChatGPT was heav-
ily dependent on their ability to interact effectively with the tool,
suggesting the importance of not only technical skills but also
the ability to clearly and comprehensively articulate problems and
requirements in prompts.

4.2 RQ2: How does the use of different tools
impact students’ objective performance in
unit testing?

Conclusion The support tools (checklist, ChatGPT, or both)
have comparable effects on student performance in testing tasks.
While ChatGPT can help clarify complex requirements and en-
courage more strategic test designs, leading to fewer unneces-
sary test cases, its ability to address implementation challenges
is limited and may foster superficial engagement.

In general, our evaluation metrics showed that the three types of
supports provided–the checklist, ChatGPT, or both–demonstrated
similar efficiency in improving student performance in testing tasks
with no statistically significant differences. Table 3 presents the
average unit testing performance of student participants in each
group across different tasks

6A Java class in the source code for the test implementation task



A Comparative Study on ChatGPT and Checklist as Support Tools for Unit Testing Education FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

For Test Design task - Mars Rover API, we assessed students’ de-
signed tests in terms of completeness (e.g., Requirement Coverage),
maintainability (e.g., Test Name Quality), and Total Test Count. Re-
quirement coverage improved in the groups that used ChatGPT—G2
with 80.0% coverage and G3with 82.7%—compared to the group that
exclusively used the checklist (G1), which achieved 74.3% coverage.
However, this difference was not statistically significant (𝑝 = 0.26,
𝜂2 = 0.58). Interestingly, despite having lower coverage, G1 pro-
duced a higher total number of test cases, averaging 11.2 tests,
compared to 8.5 and 8.7 tests in G2 and G3, respectively. While
this difference was also not significant (𝑝 = 0.39, 𝜂2 = 0.49), the
finding that students using ChatGPT achieved higher requirement
coverage with fewer tests suggested that ChatGPT may help clarify
complex requirements or encourage more strategic decisions about
what needs to be tested. This, in turn, could lead to more efficient
test designs that cover more requirements with fewer test cases.

For the Test Implementation task - Bowling Score Keeper, we as-
sessed the student-written test code in terms of completeness (e.g.,
Requirements, Instruction, and Branch Coverage), effectiveness
(e.g., Mutation Coverage and Identified Bugs), maintainability (e.g.,
Maintainability Issues and Test Name Quality), and implementa-
tion barriers (e.g., Normalized Errors), as summarized in Table 3.
In terms of test effectiveness and maintainability, students in G2
and G3 generally outperformed those in G1. However, G1 showed
a potential to surpass G2 and G3 in completeness metrics. Nonethe-
less, these differences across the three groups were not statistically
significant.

Additionally, since the checklist is unable to effectively address
implementation barriers [6], we hypothesize that ChatGPT, with
its strength in code generation, may help reduce the difficulties
students face in writing code implementations that accurately re-
flect their intentions. However, students with access to ChatGPT
in groups G2 and G3 generated nearly twice as many test cases
that deviated from their original intentions, whether in terms of
programming standards or logic. This trend is evident in the nor-
malized error rates, with G1 at 0.2 and both G2 and G3 at 0.4, as
presented in Table 3. Moreover, this finding is consistent with our
screen-recording analysis in Section 4.1, which revealed that 77.3%
of students using ChatGPT either did not execute a GPT-generated
test case or accepted the results without verifying the logic of the
generated tests. Notably, four students from each of G2 and G3 sub-
mitted completely non-compilable codes, compared to only two in
G1. These findings suggested that ChatGPT’s influence on overcom-
ing implementation barriers may be limited and may even promote
superficial task engagement.

4.3 RQ3: What are students’ subjective
experiences with different tools for unit
testing?

ConclusionWhen both the checklist and ChatGPT are avail-
able, students prefer the checklist. Compared to the checklist,
students found that ChatGPT offers less guidance on determin-
ing the adequacy of a test suite. However, ChatGPT is effective
in helping them complete test cases more quickly and in resolv-
ing programming language-related challenges.

Table 3: Assessing student code in Test Design task and Test
Implementation Task. Different colors are used to distin-
guish various aspects evaluated: Completeness, Effec-
tiveness, Maintainability, and Implementation Barriers.

Metrics
Groups (AVG)

Checklist (G1) ChatGPT (G2) Checklist & ChatGPT (G3)

Test Design task - Mars Rover API (Task 1)

1) Requirements Cov (%) 74.3 88.0 82.7

3) Test Name Quality 4.5 4.5 4.2

2) Total Test Count (#) 11.2 8.5 8.7

Test Implementation task - Bowling Score Keeper (Task 2)

1) Requirements Cov (%) 76.4 86.7 91.6

2) Instruction Cov (%) 68.0 60.0 51.8

3) Branch Cov (%) 61.2 54.5 45.4

4) Mutation Cov (%) 53.3 64.3 61.0

5) Identified Bugs (#) 1.4 1.2 2.0

6) Maintainability Issues (#) 10.1 13.9 11.5

7) Test Name Quality 3.9 4.1 4.3

8) Erroneous Test Cases (#) 4.3 9.4 8.0

9) Total Test Count (#) 18.8 22.7 19.3

10) Normalized Errorenous 0.2 0.4 0.4

While completing the testing tasks, we evaluated students’ per-
ceptions of the effectiveness of different testing support tools by
examining their usage patterns, encountered challenges, and sup-
port needs. We also assessed how helpful they perceived each tool
to be and their likelihood of recommending it for testing purposes.

Results from the post-task survey indicated that students per-
ceived both ChatGPT and the checklist as providing similar guid-
ance on what to test next during testing tasks7. However, compared
to the checklist, ChatGPT may not offer equal insights into when
a test suite is complete and when students should stop writing
additional test cases. Specifically, G1 students relied more on the
checklist than G2 students using ChatGPT to decide when to stop
testing (33.3% vs. 8.3%). This was further confirmed in G3, where
students had access to both tools but still favored the checklist over
ChatGPT (46.7% vs. 6.7%) when deciding to stop testing.

Moreover, challenges in testing faced by students8 across all
groups included time constraints9, IDE Setup, producing more cor-
rect test cases, task background understanding, programming syntax,
and tool utilization. Notably, producing more correct test cases was
the most prevalent challenge. Additionally, time constraints were
notably significant for G1, where 26.7% of students reported such
issues. The same issue was less common in groups using ChatGPT
(G2 and G3), suggesting that ChatGPT may alleviate time-related
challenges and enhance overall efficiency in testing. However, while
it offered advantages, students still highlighted specific challenges
in using ChatGPT, such as:

7refer to survey question 19, 23, 26, 30.
8refer to survey question 17.
9Time constraints: we provided suggested completion times for each task in the
instructions, but students struggled to complete them within the recommended time
frame.



FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Zihan Fang, Jiliang Li, Anda Liang, Gina R. Bai, and Yu Huang

"It is hard to use ChatGPT because writing test relates to several
java files."
"ChatGPT tended to hallucinate on the math, leading to unexpected

failures."
Furthermore, the survey responses revealed that most students

expressed a desire for additional support10, specifically in providing
more detailed task descriptions, help with IDE setup, and guidance
on programming during the testing task. Interestingly, we observed
that ChatGPT significantly aided students in resolving program-
ming issues. In G1, 53.3% of students reported needing help with
programming challenges, while only 16.7% in G2 and 13.3% in
G3 indicated requiring assistance with programming for testing.
More broadly, integrating both ChatGPT and the checklist may
provide more effective support for students with potential testing
issues—26.7% of students in G3 reported that they did not need
any additional help during the tasks, a result not observed in the
other groups. Additionally, based on students’ survey responses,
we observed that using ChatGPT may boost their confidence in the
quality and effectiveness of the test suites required by the checklist
specifications11. Students in G1 estimated that 77.0% of their test
cases followed the checklist specifications, whereas G3 reported
an average compliance of 88.0%. The Mann-Whitney U Test con-
firmed a significant difference between the two groups (𝑝 = 0.008,
𝑟 = −0.44).

Lastly, we examined students’ perceptions of the helpfulness
of the checklist and/or ChatGPT12 and whether they would rec-
ommend these tools to future students for unit testing13. Notably,
students in G3 favored the checklist over ChatGPT when both tools
were available, with a higher likelihood of recommending it to
future students, awarding it an average score of 4.4 out of 5 com-
pared to 3.9 out of 5 for ChatGPT (𝑝 = 0.04, 𝑟 = −0.53). However,
interestingly, such a difference is not observed between G1 vs. G2 –
when only one tool is available, G1’s ratings on the checklist were
similar to G2’s ratings on ChatGPT (4 vs. 4).

5 THREATS TO VALIDITY
5.1 Construct
The study evaluated students’ performance using different tools.
Thus, students’ prior familiarity with ChatGPT or the checklist may
have influenced their effective interaction, making it challenging to
isolate the tools’ effects from their previous experience. However,
as outlined in Section 3.2, the checklist consists of straightforward,
easy-to-understand text and requires no prior experience or steep
learning curve to use effectively, which helps mitigate the impact
of familiarity on the results.

Furthermore, our experiment focused on assessing students’ im-
mediate performance with or without generative AI tools through
direct observations, rather than evaluating their long-term knowl-
edge retention. The use of generative AI tools (e.g., ChatGPT) might
encourage students to rely on quick answers rather than develop-
ing a deeper understanding of concepts, leading to surface-level
learning rather than mastery of the related knowledge. As a result,

10refer to survey question 16.
11refer to survey question 20, 27.
12refer to survey questions 21, 24, 28, 31.
13refer to survey question 22, 25, 29, 32.

our approach and findings may not fully capture students’ lasting
understanding or their ability to apply knowledge over time when
using various tools. Recognizing that knowledge retention is vital
for effective learning, we suggest future research explore the impact
of generative AI on students’ retention of knowledge.

5.2 Internal
As mentioned in Section 3.6.1, while we initially recruited 42 partic-
ipants, only 37 screen recordings were deemed valid after excluding
the invalid data. The small sample size may have contributed to
the lack of statistically significant results in Section 4.1, limiting
the study’s ability to detect meaningful differences or patterns.
Furthermore, several studies have highlighted that the quality of
prompts affects the effectiveness of generative AI tools [13, 52].
The variability in students’ ability to craft effective prompts may
therefore impact the tool’s overall utility, which is further discussed
in Section 6.

Furthermore, the timing of the study–conducted as homework
immediately before a holiday–could have affected the level of effort
exerted by the students, potentially affecting their performance and
participation in the tasks. Such factors should be considered when
interpreting the findings and assessing their applicability to other
contexts.

5.3 External
In this study, all participants were recruited from the same class
and were novices in both Java and unit testing, which may limit
the generalizability of the findings. The homogeneity of the sample
could reduce the diversity needed to apply the results to broader
populations and might introduce biases tied to specific educational
practices within that class. Moreover, the shared experiences among
students may limit the variability required for robust statistical
analysis, while peer dynamics could influence individual responses,
potentially skewing the results further.

In addition, all students completed the experiment remotely,
which posed challenges in controlling the environment and ensur-
ing compliance with group-specific requirements (e.g., exclusive
checklist use by G1). While students were instructed to record their
screens, they could still use additional devices or seek external help,
potentially affecting the results. However, since the experiment was
part of their course assignments, students were informed that they
must follow the honor code, adhere to the instructions, and avoid
collusion. We also manually reviewed the screen recordings to en-
sure that all students completed the tasks in a reasonable amount
of time and in an appropriate manner (as outlined in Section 3.4,
where the suggested completion time is provided in the introduc-
tion). Additionally, to mitigate this limitation, the post-task survey
included a question to confirm which tools students used during
the testing tasks.

6 DISCUSSION
6.1 Guidelines for Students to Improve

Interaction with AI for Learning and Testing
As discussed in Section 4.1, our analysis of screen recordings re-
vealed that the quality of ChatGPT prompts drafted by students



A Comparative Study on ChatGPT and Checklist as Support Tools for Unit Testing Education FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

largely influenced the effectiveness of the generated test suites.
Poorly constructed prompts, such as those providing only partial
information, made it more challenging for students to apply the
generated content to their tasks. This finding aligns with previous
research in other fields on different tasks [13, 52]. Effectively com-
municating with AI tools is becoming a crucial skill both now and
in the future [22]. Specifically, to generate meaningful and effec-
tive unit tests with AI tools, students should provide detailed and
specific prompts that clearly outline the task and its context. Vague
prompts often lead to incomplete or irrelevant test cases, as the
AI lacks sufficient information to understand the program’s logic.
Including relevant portions of the source code in the prompt helps
the AI better grasp the functionality, resulting in more accurate
and targeted test cases. For example, instead of asking, "How can I
test this program?", a more effective prompt would be, "How can I
write unit tests for the calculateTotal() method in Frame.java
to handle edge cases like negative inputs or null values?". This level of
detail directs the AI to concentrate on specific aspects of the code.

Additionally, students should avoid broad and ambiguous ques-
tions such as "Did you cover all cases?", which often results in redun-
dant and unhelpful test cases. A more effective strategy is to specify
the exact scenarios or edge cases they intend to test. For instance,
asking, "What test cases should I write for the validateInput()
method to handle invalid user inputs?" prompts the AI to gener-
ate more relevant and comprehensive suggestions. This targeted
approach not only produces better results but also highlights the
importance of crafting high-quality prompts—an ability that de-
pends on a strong understanding of the code and testing principles.
Without foundational knowledge, students may struggle to for-
mulate effective prompts, limiting the value of AI-generated tests.
Therefore, while AI tools can assist in the testing process, master-
ing software testing concepts still remains crucial for developing
effective and thorough prompts.

Moreover, trusting AI-generated content without thorough eval-
uation can introduce logical or syntactical errors into students’
testing tasks. Rather than accepting ChatGPT’s responses uncriti-
cally, students should carefully assess the information it provides.
Specifically, students should view AI-generated output as a prelim-
inary reference and verify its accuracy by consulting their knowl-
edge, textbooks, or other reliable sources to ensure correctness and
deepen their understanding. For example, they can use checklists to
verify that GPT-generated test cases align with established criteria,
critically evaluating and validating the provided responses. How-
ever, as discussed in Section 4.1, our findings indicated that with
the support of ChatGPT, students tended to rely less on traditional
resources such as task descriptions, tutorials, and checklists. This
shift may hinder their ability to fully comprehend tasks, potentially
weakening their critical thinking and problem-solving skills. There-
fore, in the era of generative AI, students need to develop the skills
to use AI tools effectively and responsibly rather than relying on
them uncritically. For instance, students can engage with AI tools
by asking it to explain concepts to test their understanding or to
present alternative perspectives. Additionally, they can use AI tools
to refine their problem-solving strategies, ensuring active engage-
ment with the process rather than depending on AI for complete
solutions.

In addition, in Section 4.3, students highlighted ChatGPT’s effec-
tiveness in enabling them to complete testing tasks more efficiently.
While AI tools can support students in managing their study time
by providing quick clarifications and minimizing time spent on
minor obstacles, it is still important for students to balance this
efficiency with intentional practice to avoid compromising deep
and thorough learning for the sake of speed. To achieve this, estab-
lishing clear learning objectives before using AI can help students
stay focused on mastering concepts rather than merely completing
assignments.

6.2 Guidelines for Educators on Integrating AI
into Education

As discussed above, the negative outcomes associated with genera-
tive AI tools (e.g., ChatGPT) often stem from poorly constructed
prompts. Effectively using ChatGPT, therefore, requires proficiency
in prompt engineering—the skill of crafting precise and relevant
questions. Students who lack this ability may find ChatGPT less
beneficial. To address this challenge, educators could offer training
on effective interaction with AI tools, focusing on defining clear
context, specifying necessary information, and outlining the de-
sired scope of responses for specific software engineering tasks.
This need also underscores the importance of incorporating AI
communication skills into future curricula, much like the current
emphasis on coding and technical writing.

However, a critical concern arises: if students become adept at
prompt engineering and rely on generative AI tools to produce
accurate and comprehensive answers, they may prioritize using
the tool over acquiring foundational knowledge. To mitigate this
risk, educators should thoughtfully incorporate generative AI tools
through strategies that promote deeper learning. For instance, as-
signments could require students to use generative AI tools for
self-assessment by comparing their solutions with AI-generated re-
sponses to identify gaps in understanding. Additionally, educators
may encourage reflective learning by having students critique and
refine AI-generated content, explaining why certain solutions are
effective or flawed. By embedding AI tools into activities that foster
critical thinking and self-reflection, educators can shift students’
focus from merely using the tool to leveraging AI for meaningful
and enriching learning experiences.

Moreover, educators should carefully consider when to encour-
age the use of generative AI and when its use may be less beneficial.
As shown in our findings in Section 4.2, although ChatGPT led
to higher requirement coverage, students faced more implemen-
tation challenges compared to those who used only the checklist.
This outcome may stem from the checklist’s effectiveness in guid-
ing students through tasks with clear, well-defined requirements
by providing a structured, step-by-step framework that fosters
critical thinking and independent coding, rather than reliance on
pre-generated solutions. In contrast, while ChatGPT can supply
students with code, the generated content may not always align
with specific testing tasks. Nevertheless, ChatGPT proves valuable
for tasks requiring exploration and creativity by offering diverse
perspectives and enabling rapid content generation. Therefore, ed-
ucators should establish clear criteria to determine when to use
generative AI tools, traditional support methods (e.g., checklists),



FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Zihan Fang, Jiliang Li, Anda Liang, Gina R. Bai, and Yu Huang

or a combination of both for specific tasks, ensuring that each tool
is strategically integrated to maximize its effectiveness and improve
student learning efficiency and outcomes.

6.3 Evolution of Generative AI in Education
In Section 4.3, we found that students generally preferred using
checklists over ChatGPT when both were available for unit testing
tasks. This preference may be attributed to the perceived reliabil-
ity of checklists, which are specifically designed for the testing
process and are particularly valuable in contexts where the accu-
racy of the test suite is critical, such as in professional settings.
Thus, the structured and well-validated format of checklists offers
consistent and dependable guidance. In contrast, although Chat-
GPT provides broad insights, its responses can vary in relevance
and accuracy, often being more general and not always directly
addressing specific issues. A previous semester-long study demon-
strated that an education-focused large language model (LLM) can
significantly improve student learning outcomes [35]; however, a
general-purpose AI tool like ChatGPT may not yield similar results.
This highlights the need to develop generative AI tools with spe-
cialized educational features tailored to software engineering or
computer science, which could offer greater benefits in the future.
For instance, in software testing, a promising improvement could in-
volve hybrid approaches that combine AI-generated insights with
checklists, merging the concise structure of checklists with the
expansive knowledge base of AI.

Moreover, there remains a need for AI-driven personalized tu-
toring systems to provide customized feedback and guidance to
students. Further research in this area could facilitate the devel-
opment of education-focused tools that cater to diverse learning
styles and subject-specific needs, ultimately enhancing student
performance.

In addition, since neither the checklist nor ChatGPT fully re-
solves the implementation challenges students face in testing, future
research could investigate additional solutions to better support
students in overcoming these barriers. One promising direction
involves advancing education-focused AI tools to not only support
task completion but also enhance the overall learning experience.
To maintain the integrity of the learning process, AI solutions de-
signed for education could be developed to provide more effective
learning aids, strategies, and resources, potentially contributing to
reduced disparities in educational access. Future research could ex-
plore how educational AI tools can be enhanced to promote deeper
learning, despite challenges associated with prompt design. For
example, these tools could be designed to pose thought-provoking
questions that stimulate critical thinking and encourage students to
engage more deeply with the material, positioning AI as an active
partner in the learning process.

7 CONCLUSION
Software testing education has garnered considerable attention
and is steadily being integrated into computer science curricula.
Numerous tools have been developed to improve student perfor-
mance, learning experiences, and outcomes. In parallel, ChatGPT
offers new potential as an additional software assistance tool. In

this study, we explored the effects of different support tools—a tradi-
tional checklist, ChatGPT, and a combination of both—on students’
performance in unit testing tasks within software engineering. The
results indicated no statistically significant differences in perfor-
mance outcomes among students using these tools. However, the
availability of ChatGPT could provide more comprehensive sup-
port to students during testing, reducing their dependence on other
external resources and improving their time efficiency in imple-
menting test cases. While the integration of generative AI, such as
ChatGPT, into software testing education holds promising benefits,
it does not address the implementation challenges previously iden-
tified in prior research [5]. One possible explanation is that students
often engage with AI-generated responses superficially, without
applying critical thinking to evaluate or reflect on the generated
content. Additionally, the quality and accuracy of the generated
test cases are largely influenced by students’ ability to formulate
effective prompts. We then proposed recommendations for students
on how to effectively incorporate generative AI into their learning
process and for educators on how to support students in adapting
to the evolving AI landscape. Furthermore, we proposed potential
avenues for the development of AI tools tailored specifically to
educational contexts.

8 ACKNOWLEDGMENTS
We thank the support of NSF for the study: this research was sup-
ported in part by NSF grants CCF-2211429 and IUSE-2141923.

REFERENCES
[1] A Alshahrani. 2023. The impact of ChatGPT on blended learn-

ing: Current trends and future research directions. Interna-
tional Journal of Data and Network Science 7, 4 (2023), 2029–
2040.

[2] James H Andrews, Lionel C Briand, Yvan Labiche, and Ak-
bar Siami Namin. 2006. Using mutation analysis for assessing
and comparing testing coverage criteria. IEEE Transactions on
Software Engineering 32, 8 (2006), 608–624.

[3] Maurício Aniche, Felienne Hermans, and Arie Van Deursen.
2019. Pragmatic software testing education. In Proceedings
of the 50th ACM Technical Symposium on Computer Science
Education. 414–420.

[4] Gina R Bai, Zuoxuan Jiang, Thomas W Price, and Kathryn T
Stolee. 2024. Evaluating the Effectiveness of a Testing Check-
list Intervention in CS2: A Quasi-experimental Replication
Study. In Proceedings of the 20th ACM Conference on Inter-
national Computing Education Research V.1 (ICER ’24 Vol.
1) (Melbourne, VIC, Australia). ACM, New York, NY, USA.
https://doi.org/10.1145/3632620.3671102

[5] Gina R Bai, Kai Presler-Marshall, Thomas W Price, and
Kathryn T Stolee. 2022. Check it off: Exploring the impact of
a checklist intervention on the quality of student-authored
unit tests. In Proceedings of the 27th ACM Conference on on
Innovation and Technology in Computer Science Education Vol.
1. 276–282.

[6] Gina R Bai, Justin Smith, and Kathryn T Stolee. 2021. How stu-
dents unit test: Perceptions, practices, and pitfalls. In Proceed-
ings of the 26th ACM Conference on Innovation and Technology

https://doi.org/10.1145/3632620.3671102


A Comparative Study on ChatGPT and Checklist as Support Tools for Unit Testing Education FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

in Computer Science Education V. 1. 248–254.
[7] Long Bai, Xiangfei Liu, and Jiacan Su. 2023. ChatGPT: The

cognitive effects on learning and memory. Brain-X 1, 3 (2023),
e30.

[8] Paramarshi Banerjee, Anurag Srivastava, Donald Adjeroh,
Y Ramana Reddy, and Nima Karimian. 2023. Understand-
ing ChatGPT: impact analysis and path forward for teaching
computer science and engineering. Authorea Preprints (2023).

[9] Michael K Bradshaw. 2015. Ante up: A framework to
strengthen student-based testing of assignments. In Proceed-
ings of the 46th ACM Technical Symposium on Computer Science
Education. 488–493.

[10] Kevin Buffardi and Juan Aguirre-Ayala. 2021. Unit test smells
and accuracy of software engineering student test suites. In
Proceedings of the 26th ACM Conference on Innovation and
Technology in Computer Science Education V. 1. 234–240.

[11] Kevin Buffardi and Stephen H Edwards. 2015. Reconsidering
automated feedback: A test-driven approach. In Proceedings
of the 46th ACM Technical symposium on computer science
education. 416–420.

[12] Jeffrey C Carver and Nicholas A Kraft. 2011. Evaluating the
testing ability of senior-level computer science students. In
2011 24th IEEE-CS Conference on Software Engineering Educa-
tion and Training (CSEE&T). IEEE, 169–178.

[13] Cheng Chen, Sangwook Lee, Eunchae Jang, and S Shyam Sun-
dar. 2024. Is Your Prompt Detailed Enough? Exploring the
Effects of Prompt Coaching on Users’ Perceptions, Engage-
ment, and Trust in Text-to-Image Generative AI Tools. In Pro-
ceedings of the Second International Symposium on Trustworthy
Autonomous Systems. 1–12.

[14] Eason Chen, Ray Huang, Han-Shin Chen, Yuen-Hsien Tseng,
and Liang-Yi Li. 2023. GPTutor: a ChatGPT-powered program-
ming tool for code explanation. In International Conference on
Artificial Intelligence in Education. Springer, 321–327.

[15] Jim Collofello and Kalpana Vehathiri. 2005. An environment
for training computer science students on software testing.
In Proceedings Frontiers in Education 35th Annual Conference.
IEEE, T3E–6.

[16] Lucas Cordova, Jeffrey Carver, Noah Gershmel, and Gursimran
Walia. 2021. A comparison of inquiry-based conceptual feed-
back vs. traditional detailed feedback mechanisms in software
testing education: an empirical investigation. In Proceedings
of the 52nd ACM Technical symposium on computer science
education. 87–93.

[17] Marian Daun and Jennifer Brings. 2023. How ChatGPT will
change software engineering education. In Proceedings of the
2023 Conference on Innovation and Technology in Computer
Science Education V. 1. 110–116.

[18] Ana DíazMuñoz, Moisés RodríguezMonje, andMario Gerardo
Piattini Velthuis. 2024. Towards a set of metrics for hybrid
(quantum/classical) systems maintainability. JUCS: Journal of
Universal Computer Science 30, 1 (2024).

[19] Stephen H Edwards. 2004. Using software testing to move
students from trial-and-error to reflection-in-action. In Pro-
ceedings of the 35th SIGCSE technical symposium on Computer
science education. 26–30.

[20] Stephen H Edwards and Zalia Shams. 2014. Comparing test
quality measures for assessing student-written tests. In Com-
panion Proceedings of the 36th International Conference on Soft-
ware Engineering. 354–363.

[21] Stephen H Edwards and Zalia Shams. 2014. Do student pro-
grammers all tend to write the same software tests?. In Pro-
ceedings of the 2014 conference on Innovation & technology in
computer science education. 171–176.

[22] Tira Nur Fitria. 2021. Artificial intelligence (AI) in education:
Using AI tools for teaching and learning process. In Prosiding
Seminar Nasional & Call for Paper STIE AAS, Vol. 4. 134–147.

[23] Vahid Garousi, Austen Rainer, Per Lauvås Jr, and Andrea Ar-
curi. 2020. Software-testing education: A systematic literature
mapping. Journal of Systems and Software 165 (2020), 110570.

[24] Alessio Gaspar, Sarah Langevin, Naomi Boyer, and Ralph Tin-
dell. 2013. A preliminary review of undergraduate program-
ming students’ perspectives on writing tests, working with
others, & using peer testing. In Proceedings of the 14th annual
ACM SIGITE conference on Information technology education.
109–114.

[25] Giovanni Grano, Fabio Palomba, and Harald C Gall. 2019.
Lightweight assessment of test-case effectiveness using source-
code-quality indicators. IEEE Transactions on Software Engi-
neering 47, 4 (2019), 758–774.

[26] Sarah Heckman, Jessica Young Schmidt, and Jason King. 2020.
Integrating testing throughout the cs curriculum. In 2020 IEEE
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 441–444.

[27] Clara E Hill, Barbara J Thompson, and Elizabeth NuttWilliams.
1997. A guide to conducting consensual qualitative research.
The counseling psychologist 25, 4 (1997), 517–572.

[28] Laura Inozemtseva and Reid Holmes. 2014. Coverage is not
strongly correlated with test suite effectiveness. In Proceedings
of the 36th international conference on software engineering.
435–445.

[29] Sajed Jalil, Suzzana Rafi, Thomas D LaToza, Kevin Moran, and
Wing Lam. 2023. Chatgpt and software testing education:
Promises & perils. In 2023 IEEE international conference on
software testing, verification and validation workshops (ICSTW).
IEEE, 4130–4137.

[30] Ishika Joshi, Ritvik Budhiraja, Harshal Dev, Jahnvi Kadia, Mo-
hammad Osama Ataullah, Sayan Mitra, Harshal D Akolekar,
and Dhruv Kumar. 2024. ChatGPT in the Classroom: AnAnaly-
sis of Its Strengths andWeaknesses for Solving Undergraduate
Computer Science Questions. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1. 625–
631.

[31] Hen Kian Jun and Muhammad Ehsan Rana. 2021. Evaluating
the Impact of Design Patterns on Software Maintainability: An
Empirical Evaluation. In 2021 Third International Sustainability
and Resilience Conference: Climate Change. IEEE, 539–548.

[32] Tomaž Kosar, Dragana Ostojić, Yu David Liu, and Marjan
Mernik. 2024. Computer Science Education in ChatGPT Era:
Experiences from an Experiment in a Programming Course
for Novice Programmers. Mathematics 12, 5 (2024), 629.



FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Zihan Fang, Jiliang Li, Anda Liang, Gina R. Bai, and Yu Huang

[33] Joachim Krauth. 1983. The interpretation of significance tests
for independent and dependent samples. Journal of neuro-
science methods 9, 4 (1983), 269–281.

[34] Otávio Augusto Lazzarini Lemos, Fábio Fagundes Silveira,
Fabiano Cutigi Ferrari, and Alessandro Garcia. 2018. The
impact of Software Testing education on code reliability: An
empirical assessment. Journal of Systems and Software 137
(2018), 497–511.

[35] Wenhan Lyu, Yimeng Wang, Tingting Rachel Chung, Yifan
Sun, and Yixuan Zhang. 2024. Evaluating the Effectiveness
of LLMs in Introductory Computer Science Education: A
Semester-Long Field Study. arXiv preprint arXiv:2404.13414
(2024).

[36] Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein,
Erin Ross, and Ziheng Huang. 2022. Generating diverse code
explanations using the gpt-3 large language model. In Proceed-
ings of the 2022 ACM Conference on International Computing
Education Research-Volume 2. 37–39.

[37] Arthur-Jozsef Molnar and Simona Motogna. 2021. A study of
maintainability in evolving open-source software. In Evalua-
tion of Novel Approaches to Software Engineering: 15th Interna-
tional Conference, ENASE 2020, Prague, Czech Republic, May
5–6, 2020, Revised Selected Papers 15. Springer, 261–282.

[38] Olga Petrovska, Lee Clift, Faron Moller, and Rebecca Pearsall.
2024. Incorporating Generative AI into Software Development
Education. In Proceedings of the 8th Conference on Computing
Education Practice. 37–40.

[39] Rolf-Helge Pfeiffer and Mircea Lungu. 2022. Technical Debt
and Maintainability: How do tools measure it? arXiv preprint
arXiv:2202.13464 (2022).

[40] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012.
Understanding myths and realities of test-suite evolution. In
Proceedings of the ACM SIGSOFT 20th international symposium
on the foundations of software engineering. 1–11.

[41] Upsorn Praphamontripong, Mark Floryan, and Ryan Ritzo.
2020. A Preliminary Report on Hands-On and Cross-Course
Activities in a College Software Testing Course. In 2020 IEEE
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 445–451.

[42] Basit Qureshi. 2023. ChatGPT in computer science curriculum
assessment: An analysis of its successes and shortcomings. In
Proceedings of the 2023 9th International Conference on e-Society,
e-Learning and e-Technologies. 7–13.

[43] Kay E Ramey, Dionne N Champion, Elizabeth B Dyer,
Danielle T Keifert, Christina Krist, Peter Meyerhoff, Krystal

Villanosa, and Jaakko Hilppö. 2016. Qualitative analysis of
video data: Standards and heuristics. Singapore: International
Society of the Learning Sciences.

[44] Bernard Rosner, Robert J Glynn, andMei-Ling T Lee. 2006. The
Wilcoxon signed rank test for paired comparisons of clustered
data. Biometrics 62, 1 (2006), 185–192.

[45] Lilian Passos Scatalon, Jeffrey C Carver, Rogério Eduardo Gar-
cia, and Ellen Francine Barbosa. 2019. Software testing in
introductory programming courses: A systematic mapping
study. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 421–427.

[46] Zalia Shams and Stephen H Edwards. 2013. Toward practical
mutation analysis for evaluating the quality of student-written
software tests. In Proceedings of the ninth annual international
ACM conference on International computing education research.
53–58.

[47] Carlos Alexandre Gouvea da Silva, Felipe Negrelle Ramos,
Rafael Veiga de Moraes, and Edson Leonardo dos Santos. 2024.
ChatGPT: Challenges and benefits in software programming
for higher education. Sustainability 16, 3 (2024), 1245.

[48] Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad,
Jeffrey K Hollingsworth, and Nelson Padua-Perez. 2006. Ex-
periences with marmoset: designing and using an advanced
submission and testing system for programming courses. ACM
Sigcse Bulletin 38, 3 (2006), 13–17.

[49] Davide Spadini, Martin Schvarcbacher, Ana-Maria Oprescu,
Magiel Bruntink, and Alberto Bacchelli. 2020. Investigating
severity thresholds for test smells. In Proceedings of the 17th
International Conference on Mining Software Repositories. 311–
321.

[50] Lars St, SvanteWold, et al. 1989. Analysis of variance (ANOVA).
Chemometrics and intelligent laboratory systems 6, 4 (1989),
259–272.

[51] Jeffrey Voas. 1997. How assertions can increase test effective-
ness. IEEE Software 14, 2 (1997), 118–119.

[52] Yunlong Wang, Shuyuan Shen, and Brian Y Lim. 2023. Re-
prompt: Automatic prompt editing to refine ai-generative art
towards precise expressions. In Proceedings of the 2023 CHI
conference on human factors in computing systems. 1–29.

[53] Yuankai Xue, Hanlin Chen, Gina R Bai, Robert Tairas, and
Yu Huang. 2024. Does ChatGPT Help With Introductory Pro-
gramming? An Experiment of Students Using ChatGPT in
CS1. In Proceedings of the 46th International Conference on Soft-
ware Engineering: Software Engineering Education and Training.
331–341.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Testing Education
	2.2 Test Quality Measurements
	2.3 ChatGPT in CS Education

	3 Study Design
	3.1 Student Participants
	3.2 Checklist for Unit Testing
	3.3 Tasks
	3.4 Protocol
	3.5 Group Reassignment
	3.6 Data Analysis

	4 Results
	4.1 RQ1: How do students interact with different tools for unit testing?
	4.2 RQ2: How does the use of different tools impact students' objective performance in unit testing?
	4.3 RQ3: What are students’ subjective experiences with different tools for unit testing?

	5 Threats to Validity
	5.1 Construct
	5.2 Internal
	5.3 External

	6 Discussion
	6.1 Guidelines for Students to Improve Interaction with AI for Learning and Testing
	6.2 Guidelines for Educators on Integrating AI into Education
	6.3 Evolution of Generative AI in Education

	7 Conclusion
	8 Acknowledgments

