Check 1t Off:

Exploring the Impact of a
Checklist Intervention

on the Quality of
Student-authored Unit Tests

Gina R. Bai
Kai Presler-Marshall
Thomas W. Price
Kathryn T. Stolee

North Carolina State University

JULY 2022

*Images from google.com Gina R. Bai —rbai2@ncsu.edu

Bowling Scorekeeper

The objective is to TEST an application that can calculate the score of a single bowling game.

There is no graphical user interface.
You work ONLY with JUnit test cases in this project.
You have ONE HOUR to work on this project.

You are free to consult/use any online resources, including documentations, tutorials, Q&A sites, and any Eclipse built-in tools or

A Representative Case

You are provided with a completed project that contains three classes: Frame , BowlingGame and BowlingException , each contains
some fields and methods. DO NOT CHANGE the names and functionalities of the existing fields and methods.

You are expected to create JUnit test cases to verify the behavior of this impl; 1tation as thorough as possible based on the
following description of a bowling score keeper. Your program should throw BowlingException in all error situations.

Bowling Score Keeper Task Description
The game consists of 10 frames as shown below. In each frame the player has two opportunities to knock down 10 pins. The score for
the frame is the total number of pins knocked down, plus bonuses for strikes and spares.

Second throw

Strike, the score is

First throw 49 +10 + 0 + 1(next frame’s total score) = 60

A frame Spare, the score is Total game score
14 + 6 + 4 + 5(next frame’s first throw) = 29

package tdd.bsk;

import tdd.bsk.BowlingException;

private int firstThrow;

1

2

3

4

5 public class Frame {
6

7 private int secondThrow;
8

9

public Frame(int firstThrow, int secondThrow) throws BowlingException {

Kai

10 if (firstThrow > 10 || firstThrow < @
11 || secondThrow > 10 || secondThrow < @
12 || firstThrow + secondThrow > 10 || firstThrow + secondThrow < @
13 i
14 throw new BowlingException();
15 }
16 this.firstThrow = firstThrow;
17 this.secondThrow = secondThrow;
18 ¥
19
20 // the score of a single frame
21 public int score() {
22 return firstThrow + secondThrow;
23 ¥
24
25 // returns whether the frame is a strike or not
26 public boolean isStrike() {
27 return firstThrow == 10 && secondThrow
28 }
29
30 // return whether a frame is a spare or not

. . . ‘ 31 public boolean isSpare() {

[Ba I’ Sm Ith’ Stolee . ITI CS E 2 1] :; , return !isStrike() && firstThrow + secondThrow == 10; 1

Gina R. Bai — rbai2@ncsu.edu %

A Representative Case

Kai

[Bai, Smith, Stolee. ITICSE 21]

@\de
\

~

=]

stackoverflow

Gina R. Bai — rbai2@ncsu.edu

A Representative Case

[Bai, Smith, Stolee. ITiCSE 21] 3
Gina R. Bai — rbai2@ncsu.edu

A Representative Case

D
\

>
u
{
ai stackoverflow
h | h |
[Bai, Smith, Stolee. ITiCSE 21] j'a'vaj!o(de(czgera(g!

Gina R. Bai — rbai2@ncsu.edu

5 public class Frame {

6 private int firstThrow;
R t t' C 7 private int secondThrow;
‘ \ 8
e p re S e n a |Ve a S e 9= public Frame(int firstThrow, int secondThrow) throws BowlingExce
®10 if (firstThrow > 10 || firstThrow < @
&11 2 of 4 branches missed. secondThrow > 1@ || secondThrow < @
@12 || firstThrow + secondThrow > 10 || firstThrow + sec
13){
14 throw new BowlingException();

15 ¥

16 this.firstThrow = firstThrow;
17 this.secondThrow = secondThrow;
18 }

How to interpret
the report?

] // the score of a single frame

21€ public int score() {

22 return firstThrow + secondThrow;
23 x

0O

l:l Problems @ Javadoc @ Declaration | zm Coverage g3

Element Coverage Covered Instructions Missed Instructions
v b‘JBowlingScoreKeeper I 203% 58 228
== B 203% 58 228
. E 13.0:A> 34 228
Kai “I could not see which branches it . mm oox 7 o
. . . a = 44.2 % 34 43
thought | was missing. It was neither o =z . &
ception.java 0%
obvious, nor easy, to automate unit I i " :
test execution.” y

[Bai, Smith, Stolee. ITiCSE ‘21] 5
Gina R. Bai — rbai2@ncsu.edu

Students Need Support in...

» |dentifying what code to test and how to test it
» Creating tests that are semantically and syntactically correct

» Evaluating test code quality

» completeness & effectiveness (e.g., “when to stop testing”)

[Bai, Smith, Stolee. ITiCSE ‘21]
Gina R. Bai — rbai2@ncsu.edu

esting Checklists

v’ Static
v’ Lightweight
v" Transferable

README.md

Test Case Checklist

Each test case should:

be executable (i.e., it has an @Test annotation and can be run via “Run as JUnit Test")

have at least one assert statement or assert an exception is thrown. Example assert statements include:
assertTrue, assertFalse, and assertEquals (click for tutorials). For asserting an exception is thrown, there are
different approaches: try{...; fail();} catch(Exception e){assertThat...;}, @Test(expected = exception.class)
in JUnit 4, or assertThrows in JUnit 5 (click for tutorials).

evaluate/test only one method

Each test case could:

be descriptively named and commented
If there is redundant setup code in multiple test cases, extract it into a common method (e.g., using @Before)

If there are too many assert statements in a single test case (e.g., more than 5), you might split it up so each
test evaluates one behavior.

Test Suite Checklist

The test suite should:

have at least one test for each requirement
appropriately use the setup and teardown code (e.g., @Before, which runs before each @Test)
contain a fault-revealing test for each bug in the code (i.e., a test that fails)

For each requirement, contain test cases for:
Valid inputs

Boundary cases
Invalid inputs
Expected exceptions

To improve the test suite, you could:

measure code coverage using an appropriate tool, such as EclEmma (installation, tutorial). Inspect uncovered
code and write tests as appropriate.

‘= README.md

Test Case Checklist

Each test case should:

be executable (i.e., it has an @Test annotation and can be run via “Run as JUnit Test")

have at least one assert statement or assert an exception is thrown. Example assert statements include:
assertTrue, assertFalse, and assertEquals (click for tutorials). For asserting an exception is thrown, there are
different approaches: try{...; fail();} catch(Exception e){assertThat...;}, @Test(expected = exception.class)

e St i n g C h e C k ‘ i St S in JUnit 4, or assertThrows in JUnit 5 (click for tutorials).

evaluate/test only one method Tutorial Info & Syntax

Each test case could:

] be descriptively named and commented

If there is redundant setup code in multiple test cases, extract it into a common method (e.g., using @Before)

If there are too many assert statements in a single test case (e.g., more than 5), you might split it up so each
test evaluates one behavior.

Contains

Test Suite Checklist

Tutorial information Thetestsuteshouet Tost Class Components
have at least one test for each requirement

/ Te St i n g St ra t e g i e S appropriately use the setup and teardown code (e.g., @Before, which runs before each @Test)

contain a fault-revealing test for each bug in the code (i.e., a test that fails)
For each requirement, contain test cases for:

Valid input . ese e
o Equivalence Class Partitioning
undary cases
Invalid inputs Boundary Value Analysis
Expected exceptions
To improve the test suite, you could:

measure code coverage using an appropriate tool, such as EclEmma (installation, tutorial). Inspect uncovered
code and write tests as appropriate.

esting Checklists

Addresses
v' Common mistakes
v Common test smells

[Bai et al. ITiCSE 21]

[Bijlsma et al. ICSE-SEET 21]
[Aniche et al. SIGCSE ‘19]

[Edwards et al. ICSE Companion ‘14]

README.md

Test Case Checklist

Each test hould:
ach test case shou Syntax Errors

be executable (i.e., it has an @Test annotation and can be run via “Run as JUnit Test")

have at least one assert statement or assert an exception is thrown. Example assert statements include:
assertTrue, assertFalse, and assertEquals (click for tutorials). For asserting an exception is thrown, there are
different approaches: try{...; fail();} catch(Exception e){assertThat...;}, @Test(expected = exception.class)
in JUnit 4, or assertThrows in JUnit 5 (click for tutorials). .

No Assertions

evaluate/test only one method

Each test case could:

Bad Naming

be descriptively named and commented
If there is redundant setup code in multiple test cases, extract it into a common method (e.g., using @Before)

If there are too many assert statements in a single test case (e.g., more than 5), you might split it up so each

test evaluates one behavior. Assertion ROU Iette
Test Suite Checklist

The test suite should: .
Poor Requirement Coverage

have at least one test for each requirement
appropriately use the setup and teardown code (e.g., @Before, which runs before each @Test)

contain a fault-revealing test for each bug in the code (i.e., a test that fails)

For each requirement, contain test cases for: [\ isinterpretation of Fa"ing Tests
Valid inputs

Boundary cases

Testing Happy Path Only

Expected exceptions

Invalid inputs

To improve the test suite, you could:

measure code coverage using an appropriate tool, such as EclEmma (installation, tutorial). Inspect uncovered
code and write tests as appropriate.

Methodology

s0000000 Tasting Chec

—
00000000

32 students
23 undergrads + 9 grads

Cover age

7bo/

15 students

SRR | ovsyriava | aveyrlT

klists__

00000000

eeoeeeeT Undergrads 3.5 3.0
09000000

R]] Grads 0.1 0.4

00000000
pNNONeY _ ave_yruT

000000000
e Undergrads
17 students Grads 1.4 1.4

12 undergrads + 5 grads

10
Gina R. Bai — rbai2@ncsu.edu

Methodology

15 students
11 undergrads + 4 grads

00000000
seonesee € sting Checklists__ !!!!!!!'
00000000 """'
Qotaouoy
29060990
pogotune
00000 0®

32 students
23 undergrads + 9 grads

Cover age

TOO/

i Rl

17 students
12 undergrads + 5 grads

Perception

[>] 2-hour lab session

11

Gina R. Bai — rbai2@ncsu.edu

Measurements of Test Code Quality

» Completeness
» Requirements coverage
» Instruction coverage
» Branch coverage

Test > Effectiveness
Implementation » Mutation coverage
» The number of identified seeded bugs

» Maintainability
» The number of smelly tests

Gina R. Bai — rbai2@ncsu.edu

Checklists vs. Coverage To

ReqCov InstructionCov BranchCov MutationCov #ldentifiedBug #Smelly

B Checklist m Coverage m Checklist m Coverage

13
Gina R. Bai — rbai2@ncsu.edu

Checklists vs. Coverage Tools

Similar test code quality

II I with less assertions

#iTest #Assertion

B Checklist m Coverage

Gina R. Bai — rbai2@ncsu.edu

14

Checklists vs. Coverage

80% 16
Similar (higher) coverage Half of #astn
60% 12
50% 10
40% 8
30% 6
20% 4
10% 2
0% 0
ReqCov InstructionCov BranchCov MutationCov HTest #Assertion
B ChecklistGrad ® CoverageGrad m ChecklistGrad m CoverageGrad

15
Gina R. Bai — rbai2@ncsu.edu

Checklists vs. Coverage

70%
diff > 15%
60%
diff = 10%
-_—— o
90% 50%
80%
40%
70%
60%
30%
50%
40% 20%
30%
10%
20%
10%
0%
0%

UGrad Grad

ReqCov InstructionCov BranchCov MutationCov

m Checklist m Coverage B Checklist_Mutation ~ m Coverage_Mutation

16
Gina R. Bai — rbai2@ncsu.edu

Student Engagement

¢ Students found the checklists “very helpful” (Likert-scale: 3.9/5)

¢ Most (13/15) students self-reported that they read the checklists
before they wrote any unit tests

Gina R. Bai — rbai2@ncsu.edu

17

Future Work

Replication Studies
» With diverse and larger set of students and study tasks

Extending the Checklist Intervention

» Supports automated real-time feedback

* a progress report
* coverage reports
* hints on how to address any shortcoming of the tests

» Intelligent tutoring systems

Adoption of Think-aloud or Eye-tracking
» To learn students’ decision-making process

Gina R. Bai — rbai2@ncsu.edu

18

Takeaways

¢ Tool support does not need to be sophisticated to be effective

¢ Students who have lower prior knowledge in Java and unit testing
may benefit more from the checklist

Gina R. Bai — rbai2@ncsu.edu

19

